Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120702    DOI: 10.1088/1674-1056/25/12/120702
GENERAL Prev   Next  

Evidence of polymorphic transformations of Sn under high pressure

Qiu-Min Jing(敬秋民)1, Yu-Hong Cao(曹玉红)2, Yi Zhang(张毅)1, Shou-Rui Li(李守瑞)1, Qiang He(何强)1, Qi-Yue Hou(侯琪玥)1, Sheng-Gang Liu(刘盛刚)1, Lei Liu(柳雷)1, Yan Bi(毕延)1, Hua-Yun Geng(耿华运)1, Qiang Wu(吴强)1
1. National Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
2. Metrology Testing Center for China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angle-dispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of 40.9 GPa-73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→bco+bcc→bcc upon compression to 108.9 GPa at room temperature.

Keywords:  high-pressure      polymorph      structural transformation      Sn  
Received:  22 June 2016      Revised:  20 August 2016      Accepted manuscript online: 
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.cp (X-ray diffraction)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304294 and 11274281) and the Science Fund from the National Laboratory of Shock Wave and Detonation Physics of China (Grant Nos. 9140C670201140C67281 and 9140C670102150C67288).

Corresponding Authors:  Qiu-Min Jing, Yi Zhang     E-mail:  j_qm@163.com;zhangyi@caep.ac.cn

Cite this article: 

Qiu-Min Jing(敬秋民), Yu-Hong Cao(曹玉红), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Qiang He(何强), Qi-Yue Hou(侯琪玥), Sheng-Gang Liu(刘盛刚), Lei Liu(柳雷), Yan Bi(毕延), Hua-Yun Geng(耿华运), Qiang Wu(吴强) Evidence of polymorphic transformations of Sn under high pressure 2016 Chin. Phys. B 25 120702

[1] Christensen N E, Satpathy S and Pawlowska Z 1986 Phys. Rev. B 34 5977
[2] Christensen N E and Methfessel M 1993 Phys. Rev. B 48 5797
[3] Mujica A, Rubio A, Muñoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[4] Musgrave M J P 1963 Proc. R. Soc. London Ser. A 272 503
[5] Barnett D, Bean V and Hall T 1966 J. Appl. Phys. 37 875
[6] Olijnyk H and Holzapfel W B 1984 J. Phys. C 8 153
[7] Liu M and Liu L 1986 High Temp. High Press. 18 79
[8] Desgreniers S, Vohra Y K and Ruoff A L 1989 Phys. Rev. B 39 10359
[9] Salamat A, Garbarino G, Dewaele A, Bouvier P, Petitgirard S, Pickard C J, McMillan P F and Mezouar M 2011 Phys. Rev. B 84 140104
[10] Salamat A, Briggs R, Bouvier P, Petitgirard S, Dewaele A, Cutler M E, Corá F, Daisenberger D, Garbarino G and McMillan P F 2013 Phys. Rev. B 88 104104
[11] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[12] Hammersley P, Svensson S O, Hanfland M, Fitch A N and Häusermann D 1996 High Pressure Res. 14 235
[13] Toby B H 2001 J. Appl. Crystallogr. 34 210
[14] Ma Y Z, Selvi E, Levitas V I and Hashemi J 2006 J. Phys.:Condens. Matter 18 S1075
[15] Von Barge N and Boehler R 1990 High Pressure Res. 6 133
[16] Errandonea D, Meng Y, Somayazulu M and Hausermann D 2005 Physica B 355 116
[17] Liu L, Bi Y and Xu J 2013 Chin. Phys. B 22 056201
[18] Klotz S, Chervin J C, Munsch P and Marchand G L 2009 J. Phys. D:Appl. Phys. 42 075413
[19] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 70 094112
[20] Dorogokupets P I and Oganov A R 2007 Phys. Rev. B 75 024115
[21] Raju S V, Zaug J M, Chen B, Yan J, Knight J W, Jeanloz R and Clark S M 2011 J. Appl. Phys. 110 023521
[22] Jing Q, Wu Q, Liu L, Xu J, Bi Y, Liu Y, Chen H, Liu S, Zhang Y, Xiong L, Li Y and Liu J 2013 J. Appl. Phys. 113 023507
[23] Caspersen K J, Lew A, Ortiz M and Carter E A 2004 Phys. Rev. Lett. 93 115501
[24] Jacobsen M K, Velisavljevic N and Sinogeikin S V 2015 J. Appl. Phys. 118 025902
[25] Ding Y, Ahuja R, Shu J, Chow P, Luo W and Mao H K 2007 Phys. Rev. Lett. 98 085502
[26] Jenei Z, Liermann H P, Cynn H, Klepeis J H P, Baer B J and Evans W J 2011 Phys. Rev. B 83 054101
[1] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[5] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[6] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[9] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[10] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[11] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[12] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[13] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[14] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[15] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
No Suggested Reading articles found!