ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide |
Yanfen Zhai(翟彦芬), Renduo Qi(齐人铎), Chenzhi Yuan(袁晨智), Wei Zhang(张巍), Yidong Huang(黄翊东) |
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract In this paper, we introduce a horizontal slot in the reversed-rib chalcogenide glass waveguide to tailor its dispersion characteristics. The waveguide exhibits a flat and low dispersion over a wavelength range of 1080 nm, in which the dispersion fluctuates between -10.6 ps·nm-1·km-1 and+11.14 ps·nm-1·km-1. The dispersion tailoring effect is due to the mode field transfer from the reversed-rib waveguide to the slot with the increase of wavelength, which results in the extension of the low dispersion band. Moreover, the nonlinear coefficient and the phase-matching condition of the four-wave mixing process in this waveguide are studied, showing that the waveguide has great potential in nonlinear optical applications over a wide wavelength range.
|
Received: 17 February 2016
Revised: 12 May 2016
Accepted manuscript online:
|
PACS:
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB328700 and 2011CBA00303) and the National Natural Science Foundation of China (Grant Nos. 61575102 and 61321004). |
Corresponding Authors:
Wei Zhang
E-mail: zwei@tsinghua.edu.cn
|
Cite this article:
Yanfen Zhai(翟彦芬), Renduo Qi(齐人铎), Chenzhi Yuan(袁晨智), Wei Zhang(张巍), Yidong Huang(黄翊东) Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide 2016 Chin. Phys. B 25 114211
|
[1] |
Chavez B J M, Bodenmüller D, Fremberg T, Haynes R, Roth M M, Eisermann R, Lisker M, Zimmermann L and Böhm M 2014 J. Opt. Soc. Am. B 31 2846
|
[2] |
Lamont M R, Luther-Davies B, Choi D Y, Madden S and Eggleton B J 2008 Opt. Express 16 14938
|
[3] |
De Leonardis F and Passaro V M N 2011 Adv. Optoelectron. 2011 751498
|
[4] |
Duan L, Yang Z Y, Liu C and Yang W L 2016 Chin. Phys. Lett. 33 10501
|
[5] |
Wang H Y, Xu W C, Luo Z C, Luo A P, Cao W J, Dong J L and Wang L Y 2011 Chin. Phys. Lett. 28 024207
|
[6] |
Amiri I S, Afroozeh A, Bahadoran M, Amiri I S, Afroozeh A and Bahadoran M 2011 Chin. Phys. Lett. 28 104205
|
[7] |
McCarthy J, Bookey H, Beecher S, Lamb R, Elder I and Kar A K 2013 Appl. Phys. Lett. 103 151103
|
[8] |
Zhang H, Das S, Huang Y, Li C, Chen S, Zhou H, Yu M, Guo-Qiang L P and Thong J T L 2012 Appl. Phys. Lett. 101 021105
|
[9] |
Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S and Luther-Davies B 2013 Opt. Mater. Express 3 1075
|
[10] |
Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil R G and Willner A E 2012 Opt. Express 20 1685
|
[11] |
Liang T K and Tsang H K 2004 Appl. Phys. Lett. 84 2745
|
[12] |
Liu Q, Gao S, Li Z, Xie Y and He S 2011 Appl. Opt. 50 1260
|
[13] |
Lin Q, Zhang J, Fauchet P M and Agrawal G P 2006 Opt. Express 14 4786
|
[14] |
Lamont M R, de Sterke C M and Eggleton B J 2007 Opt. Express 15 9458
|
[15] |
An L, Liu H, Sun Q, Huang N and Wang Z 2014 Appl. Opt. 53 4886
|
[16] |
Jin B, Yuan J, Yu C, Sang X, Wei S, Zhang X, Wu Q and Farrell G 2014 Opt. Express 22 6257
|
[17] |
Collins M J, Clark A S, He J, Choi D Y, Williams R J, Judge A C, Madden S J, Withford M J, Steel M J, Luther-Davies B, Xiong C and Eggleton B J 2012 Opt. Lett. 37 3393
|
[18] |
Cardinal T, Richardson K A, Shim H, Schulte A, Beatty R, Le Foulgoc K, Meneghini C, Viens J F and Villeneuve A 1999 J. Non-Cryst. Solids 256 353
|
[19] |
Viens J F, Meneghini C, Villeneuve A, Galstian T V, Knystautas E J, Duguay M A, Richardson K A and Cardinal T 1999 J. Light. Technol. 17 1184
|
[20] |
Feigel A, Kotler Z, Sfez B, Arsh A, Klebanov M and Lyubin V 2000 Appl. Phys. Lett. 77 3221
|
[21] |
Zhai Y, Qi R, Yuan C, Dong S, Zhang W and Huang Y 2016 IEEE Photonics J. 8 2700709
|
[22] |
Al-Kadry A, Li L, Amraoui M E, North T, Messaddeq Y and Rochette M 2015 Opt. Lett. 40 4687
|
[23] |
Zhai Y, Yuan C, Qi R, Zhang W and Huang Y 2015 IEEE Photonics J. 7 7801609
|
[24] |
Chiles J, Malinowski M, Rao A, Novak S, Richardson K and Fathpour S 2015 Appl. Phys. Lett. 106 111110
|
[25] |
Luther-Davies B, Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D Y, Madden S, Moller U, Kubat I, Petersen C, Brilland L, M'echin D, Caillaud C, Troles J and Bang O 2015 Nonlinear Optics 2015$, OSA Technical Digest p. NTu1A.4
|
[26] |
Yu Y, Gai X, Ma P, Choi D Y, Yang Z, Wang R, Debbarma S, Madden S J and Luther-Davies B 2014 Laser Photonics Rev. 8 792
|
[27] |
Zou Y, Moreel L, Lin H, Zhou J, Li L, Danto S, Musgraves J D, Koontz E, Richardson K, Dobson K D, Birkmire R and Hu J 2014 Adv. Opt. Mater. 2 759
|
[28] |
Zou Y, Zhang D, Lin H, Li L, Moreel L, Zhou J, Du Q, Ogbuu O, Danto S, Musgraves J D, Richardson K, Dobson K D, Birkmire R and Hu J 2014 Adv. Opt. Mater. 2 478
|
[29] |
Zha Y, Lin P T, Kimerling L, Agarwal A and Arnold C B 2014 ACS Photonics 1 153
|
[30] |
Gai X, Madden S, Choi D Y, Bulla D and Luther-Davies B 2010 Opt. Express 18 18866
|
[31] |
Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photonics 5 141
|
[32] |
Eggleton B J 2010 Opt. Express 18 26632
|
[33] |
Karim M R, Rahman B M A, Azabi Y O, Agrawal A and Agrawal G P 2015 JOSA B 32 2343
|
[34] |
Luther-Davies B, Gai X, Madden S J, Choi D Y, Yang Z, Wang R, Ma P and Yu I 2013 CLEO:Science and Innovations (Optical Society of America) p. CM1L
|
[35] |
Eggleton B J, Vo T D, Pant R, Schr J, Pelusi M D, Yong C D, Madden S J and Luther-Davies B 2012 Laser Photonics Rev. 6 97
|
[36] |
Collins M J, Clark A, He J, Shahnia S, Williams R J, Judge A C, Magi E, Choi D Y, Luther-Davies B and Eggleton B J 2012 Frontiers in Optics (Optical Society of America) p. FTu4D
|
[37] |
Qiao H A, Anheier N C, Musgrave J D, Richardson K and Hewak D W 2011 SPIE Defense, Security, and Sensing (International Society for Optics and Photonics) p. 80160F
|
[38] |
Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J and WillnerA E 2015 J. Opt. Soc. Am. B 32 26
|
[39] |
Liu Y, Yan J and Han G 2014 Appl. Opt. 53 6302
|
[40] |
Wang S, Hu J, Guo H and Zeng X 2013 Opt. Express 21 3067
|
[41] |
Nolte P W, Bohley C and Schilling J 2013 Opt. Express 21 1741
|
[42] |
Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J and Wang Z 2012 Opt. Express 20 15899
|
[43] |
Zhang L, Yue Y, Xiao-Li Y, Wang J, Beausoleil R G and WillnerA E 2010 Opt. Express 18 13187
|
[44] |
He J, Xiong C, Clark A S, Collins M J, Gai X, Choi D Y, Madden S J, Luther-Davies B and Eggleton B J 2012 J. Appl. Phys. 112 123101
|
[45] |
Choi D Y, Maden S, Rode A, Wang R and Luther-Davies B 2008 J. Non-Cryst. Solids 354 3179
|
[46] |
Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R, Bulla D and Luther-Davies B 2010 Opt. Express 18 26635
|
[47] |
Choi D Y, Madden S, Rode A, Wang R, Bulla D and Luther-Davies B 2008 J. Non-Cryst. Solids 354 5253
|
[48] |
Choi D Y, Madden S, Bulla D A, Wang R, Rode A and Luther-Davies B 2010 IEEE Photonics Technol. Lett. 22 495
|
[49] |
Pittman T B, Jacobs B C and Franson J D 2005 Opt. Commun. 246 545
|
[50] |
Zhai Y, Qi R, Yuan C, Zhang W and Huang Y 2016 Appl. Phys. Express 9 052201
|
[51] |
Barile C J, Nuzzo R G and Gewirth A A 2015 J. Phys. Chem. C 119 13524
|
[52] |
Rodney W S, et al. 1958 Anon Refractive Index of As2S3 (Arsenic Trisulfide)
|
[53] |
Malitson I H 1965 Anon Refractive Index of SiO2 (Silicon Dioxide, Silica, Quartz)
|
[54] |
Li L, Zou Y, Lin H, Hu J, Sun X, Feng N N, Danto S, Richardson K, Gu T and Haney M 2013 J. Light. Technol. 31 4080
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|