Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108801    DOI: 10.1088/1674-1056/25/10/108801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Comparision between Ga- and N-polarity InGaN solar cells with gradient-In-composition intrinsic layers

Lin Lu(鲁麟)1,2, Ming-Chao Li(李明潮)1,2, Chen Lv(吕琛)2, Wen-Gen Gao(高文根)1,2, Ming Jiang(江明)1,2, Fu-Jun Xu(许福军)3, Qi-Gong Chen(陈其工)1,2
1 Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University, Wuhu 241000, China;
2 College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
3 Research Center for Wide Gap Semiconductor, School of Physics, Peking University, Beijing 100871, China
Abstract  Performances of Ga- and N-polarity solar cells (SCs) adopting gradient-In-composition intrinsic layer (IL) are compared. It is found the gradient ILs can greatly weaken the negative influence from the polarization effects for the Ga- polarity case, and the highest conversion efficiency (η) of 2.18% can be obtained in the structure with a linear increase of In composition in the IL from bottom to top. This is mainly attributed to the adsorptions of more photons caused by the higher In composition in the IL closer to the p-GaN window layer. In contrast, for the N-polarity case, the SC structure with an InGaN IL adopting fixed In composition prevails over the ones adopting the gradient-In-composition IL, where the highest η of 9.28% can be obtained at x of 0.62. N-polarity SC structures are proven to have greater potential preparations in high-efficient InGaN SCs.
Keywords:  InGaN      solar cell      polarity  
Received:  12 April 2016      Revised:  13 June 2016      Accepted manuscript online: 
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  81.05.Ea (III-V semiconductors)  
  88.40.jm (Thin film III-V and II-VI based solar cells)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, and 61271377), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 2013693), and the Anhui Polytechnic University Funds for Excellent Young Scientists, China (Grant No. 2014YQQ005).
Corresponding Authors:  Lin Lu     E-mail:  LLu-wh@qq.com

Cite this article: 

Lin Lu(鲁麟), Ming-Chao Li(李明潮), Chen Lv(吕琛), Wen-Gen Gao(高文根), Ming Jiang(江明), Fu-Jun Xu(许福军), Qi-Gong Chen(陈其工) Comparision between Ga- and N-polarity InGaN solar cells with gradient-In-composition intrinsic layers 2016 Chin. Phys. B 25 108801

[1] Hamzaoui H, Bouazzi A S and Rezig B 2005 Sol. Energ. Mater. Sol. Cells 87 595
[2] Zhou M and Zhao D G 2012 Acta Phys. Sin. 61 168402 (in Chinese)
[3] Wu J, Walukiewicz W, Yu K M, Shan W and Ager JW 2003 J. Appl. Phys. 94 6477
[4] Xing Y H, Han J, Liu J P, Deng J, Niu N H and Shen G D 2007 Acta Phys. Sin. 56 7295 (in Chinese)
[5] Zhao B J, Chen X, Ren Z W, Tong J H, Wang X F, Li D W, Zhuo X J, Zhang J, Yi H X and Li S T 2013 Chin. Phys. B 22 088401
[6] Elmasry N A, Piner E L, Liu S X and Bedair S M 1998 Appl. Phys. Lett. 72 40
[7] McCluskey M D, Romano L T, Krusor B S, Bour D P, Johnson N M and Brennan S 1998 Appl. Phys. Lett. 72 1730
[8] Doppalapudi D, Basu S N, Ludwig K F and Moustakas T D 1998 J. Appl. Phys. 84 1389
[9] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[10] Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He X G, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2013 Chin. Phys. B 22 098801
[11] Yu L, Zhang Y W, Li K, Pi H, Diao J S, Wang X F, Hu W X, Zhang C Z, Song W D, Shen Y and Li S T 2015 Chin. Phys. B 24 077801
[12] Li Z Q, Lestradet M, Xiao Y G and Li S 2011 Phys. Status Solidi 208 928
[13] Chang J Y and Kuo Y K 2012 J. Appl. Phys. 112 033109
[14] Keller S, Fichtenbaum N A, Furukawa M, Speck J S, Denbaars S P and Mishra U K 2007 Appl. Phys. Lett. 90 191908
[15] Cai X M, Wang Y, Chen B H, Liang M M, Liu W J, Zhang J Y, Lv X Q, Ying L Y and Zhang B P 2013 IEEE Photon. Technol. Lett. 25 59
[16] Kuo Y K, Chang J Y and Shih Y H 2012 IEEE J. Quantum Electron. 48 367
[17] Jeng M J 2012 Int. J. Photoenergy 8 7073
[18] Nacer S and Aissat A 2015 Optik 126 3594
[19] Brown G F, Iii J W A, Walukiewicz W and Wua J 2010 Sol. Energ. Mater. Sol. Cells 94 478
[20] Wang L, Hu W D, Chen X S and Lu W 2012 J. Electron. Mater. 41 2130
[21] Liu C, Wang C, Chen XY and Yang Y 2015 Opt. Quantum Electron. 47 2479
[22] Zhu D, Xu J R, Noemaun A N, Kim J K, Schubert E F, Crawford M H and Koleske D D 2009 Appl. Phys. Lett. 94 081113
[23] Chen J R, Lu T C, Kuo H C, Fang K L, Huang K F, Kuo C W, Chang C J, Kuo C T and Wang S C 2010 IEEE Photon. Technol. Lett. 22 860
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[4] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[5] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[6] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[7] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[10] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[11] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[12] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[13] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[14] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[15] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
No Suggested Reading articles found!