Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107801    DOI: 10.1088/1674-1056/25/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optoelectronic and thermoelectric properties of Zintl YLi3X2(X=Sb, Bi) compounds through modified Becke—Johnson potential

T Seddik1, G Uğur2, R Khenata1, Ş Uğur2, F Soyalp3, G Murtaza4, D P Rai5, A Bouhemadou6, S Bin Omran7
1 Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Algeria;
2 Department of Physics, Faculty of Science, Gazi University, 06500 Ankara, Turkey;
3 YüzüncüYıl University, Faculty of Education, Department of Physics, Van 65080, Turkey;
4 Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar, Pakistan;
5 Department of Physics, Pachhunga University College, Aizawl, India-796001;
6 Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif 1, 19000 Setif, Algeria;
7 Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
Abstract  In the present work, we investigate the structural, optoelectronic and thermoelectric properties of the YLi3X2(X=Sb, Bi) compounds using the full potential augmented plane wave plus local orbital (FP-APW+lo) method. The exchange-correlation potential is treated with the generalized gradient approximation/local density approximation (GGA/LDA) and with the modified Becke-Johnson potential (TB-mBJ) in order to improve the electronic band structure calculations. In addition, the estimated ground state properties such as the lattice constants, external parameters, and bulk moduli agree well with the available experimental data. Our band structure calculations with GGA and LDA predict that both compounds have semimetallic behaviors. However, the band structure calculations with the GGA/TB-mBJ approximation indicate that the ground state of the YLi3Sb2 compound is semiconducting and has an estimated indirect band gap (Γ-L) of about 0.036 eV while the ground state of YLi3Bi2 compound is semimetallic. Conversely the LDA/TB-mBJ calculations indicate that both compounds exhibit semiconducting characters and have an indirect band gap (Γ-L) of about 0.15 eV and 0.081 eV for YLi3Sb and YLi3Bi2 respectively. Additionally, the optical properties reveal strong responses of the herein materials in the energy range between the IR and extreme UV regions. Thermoelectric properties such as thermal conductivity, electrical conductivity, Seebeck coefficient, and thermo power factors are also calculated.
Keywords:  Zintl compounds      TB-mBJ      electronic band-structure      optical properties      thermoelectric properties  
Received:  16 March 2016      Revised:  12 June 2016      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  79.10.-n (Thermoelectronic phenomena)  
Corresponding Authors:  T Seddik, R Khenata     E-mail:  sedik_t@yahoo.fr;khenata_rabah@yahoo.fr

Cite this article: 

T Seddik, G Uğur, R Khenata, Ş Uğur, F Soyalp, G Murtaza, D P Rai, A Bouhemadou, S Bin Omran Optoelectronic and thermoelectric properties of Zintl YLi3X2(X=Sb, Bi) compounds through modified Becke—Johnson potential 2016 Chin. Phys. B 25 107801

[1] Toberer E S, Andrew F M, Brent C M, Espen F L and Snyder G J 2010 Dalton Trans. 39 1046
[2] Zhang H, Zhao J T, Grin Y, Wang X J, Tang M B, Man Z Y, Chen H H and Yang X X 2008 J. Chem. Phys. 129 164713
[3] Gascoin F, Ottensmann S, Stark D, Häıle S M and Snyder G S 2005 Adv. Funct. Mater. 15 1860
[4] Zwiener G, Neumann H and Schuster H U 1981 Z. Naturforsch. 36b 1195
[5] Weber F, Cosceev A, Nateprov A, Pfleiderer C, Faißt A, Uhlarz M and Löhneysen H V 2005 Physica B 226 359
[6] Weber F, Cosceev A, Drobnik S, Faißt A, Grube K, Nateprov A, Pfleiderer C, Uhlarz M and Löhneysen H V 2006 Phys. Rev. B 73 014427
[7] Ponnambalam V, Lindsey S, Xie W, Thompson D, Drymiotis F and Terry M T 2011 J. Phys. D: Appl. Phys. 44 155406
[8] Ponnambalam V and Donald T M 2014 J. Electron. Mater. 43 1875
[9] Schellenberg I, Eul M, Hermes W and Pöttgen R 2010 Z. Anorg. Allg. Chem. 855 636
[10] Artmann A, Mewis A, Roepke M and Michels G 1996 Z. Anorg. Allg. Chem. 622 679
[11] Grund I, Schuster H U and Müller P 1984 Z. Anorg. Allg. Chem. 515 151
[12] Schäfer M C, Suen N T, Raglione M and Bobev S 2014 J. Solid State Chem. 210 89
[13] Winter F, Dupke S, Eckert H and Pöttgen R 2014 Monatsh. Chem. 145 1381
[14] Madsen G K H, Blaha P, Schwarz K, Sjöstedt E and Nordström L 2001 Phys. Rev. B 64 195134
[15] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[16] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, “An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties”, Vienna University of Technology, Austria
[17] Wong K M, Alay-e-Abbas S M, Shaukat A, Fang Y and Lei Y 2013 J. Appl. Phys. 113 014304
[18] Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901
[19] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[20] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[21] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[22] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 5390
[23] Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1
[24] Wooten F1972 Optical Properties of Solids (New York: Academic Press)
[25] Sharma S, Verma A S, Bhandari R, Kumari S and Jindal V K 2014 Mater. Sci. Semicond. Process. 27 79
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[6] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[7] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[8] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
No Suggested Reading articles found!