Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107405    DOI: 10.1088/1674-1056/25/10/107405
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controlled synthesis of ferromagnetic MnSex particles

Junjie Sun(孙俊杰), Chao Li(李超), Duo Chen(陈铎), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Liangmo Mei(梅良模)
School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The MnSex (x=1,2) nanoparticles were synthesized under hydrothermal condition, by reaction of the reduced selenium and Mn2+ ion in the presence of hydrazine and acetic acid. By precisely controlling the pH value of the solution, a series of MnSex particles were synthesized. The structure and morphology of as-prepared particles were examined with x-ray diffractometer (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The average sizes of as-prepared particles varied from nanoscale to microscale with pH value increase. Furthermore, the nucleation and growth mechanism associated with pH values were discussed, which can be applied to the hydrothermal synthesis of metal chalcogenide in general. Finally, the optical and magnetic properties of as-prepared particles were measured. All as-made particles exhibit a ferromagnetic behavior with low coercivity and remanence at room temperature.
Keywords:  transition metal chalcogenide      phase transition      controlled synthesis  
Received:  29 February 2016      Revised:  14 July 2016      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.
Corresponding Authors:  Shishou Kang     E-mail:  skang@sdu.edu.cn

Cite this article: 

Junjie Sun(孙俊杰), Chao Li(李超), Duo Chen(陈铎), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Liangmo Mei(梅良模) Controlled synthesis of ferromagnetic MnSex particles 2016 Chin. Phys. B 25 107405

[1] Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D and Zhai T 2015 Adv. Mater 27 8035
[2] Jarrett H S, Cloud W H, Bouchard R J, Butler S R, Frederick C G and Gillson J L 1968 Phys. Rev. Lett. 21 617
[3] Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 553
[4] Song G, Liang C, Gong H, Li M, Zheng X, Cheng L, Yang K, Jiang X and Liu Z 2015 Adv. Mater. 27 6110
[5] Hankare P P, Jadhav B V, Garadkar K M, Chate P A, Mulla I S and Delekar S D 2010 J. Alloys Compd. 490 228
[6] Azam S andMasoud S N 2014 J. Alloys Compd. 617 93
[7] Moloto N, Moloto M J, Kalenga M, Govindraju S and Airo M 2013 Opt. Mater. 36 31
[8] Wu M Z, Xiong Y, Jiang N, Ning M and Chen Q W 2004 J. Cryst. Growth 262 567
[9] Lei S J, Tang K B and Zheng H G 2006 Mater. Lett. 60 1625
[10] Wang Y, Zhang D and Xiang Z B 2015 Mater. Res. Bull. 67 152
[11] Zhou W Q, Wu S X and Li S W 2015 J. Magn. Magn. Mater. 395 166
[12] Liu X, Du J, Li C, Han X P, Hu X F, Cheng F Y and Chen J 2015 J. Mater. Chem. A 3 3425
[13] Sines I T, Misra R, Schiffer P and Schaak R E 2010 Angew. Chem. 49 4638
[14] Peng Q, Dong Y J, Deng Z X, Kou H Z, Gao S and Li Y D 2002 J. Phys. Chem. B 106 9261
[15] Whittingham M S 1978 Prog. Solid State Chem. 12 41
[16] Levy L, Feltin N, Ingert D and Pileni M P 1997 J. Phys. Chem. B 101 9153
[17] Kim H, Vogelgesang R and Ramdas A K 1998 Phys. Rev. B 58 4
[18] Furdyna J K 1988 J. Appl. Phys. 64 29
[19] Suyver J F, Wuister S F, Kelly J J and Meijerink A 2001 Nano Lett. 1 429
[20] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molna S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 24 9
[21] Heimbrodt W, Goede O, Tschentscher I, Weinhold V, Klimakow A, Pohl U, Jacobs K and Hoffmann N 1993 Physica B: Condens Matter 185 357
[22] Tomasini P, Haidoux A, Te'denac J C and Maurin M 1998 J. Cryst. Growth 193 5
[23] Decker D L and Wild R L 1971 Phys. Rev. B 4 3425
[24] Zhang W X, Hui Z H, Cheng Y W, Zhang L, Xie Y and Qian Y T 2000 J. Cryst. Growth 209 4
[25] Zhang W X, Yang Z H, Qian Y T, Zhou G, Hu Z H, Li Y G and Yu W C 2000 Mater. Res. Bull. 35 6
[26] Liu X D, Ma J M, Peng P and Zheng W J 2009 J. Cryst. Growth 311 1359
[27] Moloto N, Moloto M J, Coville N J and Suprakas S R 2011 J. Cryst. Growth 324 41
[28] Peng Q, Dong Y J, Deng Z X, Kou H Z, Gao S and Li Y D 2002 J. Phys. Chem. B 106 5
[29] Wang L C, Chen L Y, Luo T, Bao K Y and Qian Y T 2006 Solid State Commun. 138 72
[30] Qin T, Lu J, Wei S, Qi P F, Peng Y Y, Yang Z P and Qian Y T 2002 Inorg. Chem. Commun. 5 3
[31] Lei S J, Tang K B, Yang Q and Zheng H G 2005 Eur. J. Inorg. Chem. 2005 4124
[32] Chun H J, Lee J Y, Kim D S, Yoon S W, Kang J H and Park J 2007 J. Phys. Chem. C 111 519
[33] Tang S X, Zhu H Y, Jiang J R, Wu X X, Dong Y X, Zhang J, Yang D P and Cui Q L 2015 Chin. Phys. B 24 096101
[34] Wang X F, Xing X, Zhang Q L, You J L, Wu J, Zhang D M, Sun Y, Sun D L and Yin S T 2015 Chin. Phys. B 24 098104
[35] Wu Y, Dong X L, Ma M W, Yang H X, Zhang C, Zhou F, Zhou X J and Zhao Z X 2014 Chin. Phys. Lett. 31 077401
[36] Wang S B, Li K W, Zhai R, Wang H, Hou Y D and Yan H 2005 Mater. Chem. Phys. 91 298
[37] Lamer V K and Dinegar R H 1950 J. Am. Chem. Soc. 72 4847
[38] Wang Y, Wang C, Xu S, Shao H, Jiang Y, Bo F, Wang Z and Cui Y 2014 J. Colloid Interface Sci. 415 7
[39] Li B X, Xie Y, Xu Y, Wu C Z and Li Z Q 2006 J. Solid State Chem. 179 56
[40] Zhang W X, Yang Z H, QianY T, Zhou G N, Hui Z H and Yang L 2000 Mater. Res. Bull. 35 2009
[41] Safdar M, Wang Q S, Mirza M, Wang Z X and He J 2014 Cryst. Growth Des. 14 2502
[42] Nikoobakht B and El-Sayed M A 2003 Chem. Mater. 15 1957
[43] Raveau B and Seikh M M 2015 Handbook of Magnetic Materials, Vol.23, pp. 161-289
[44] Yi J B, Ding J, Feng Y P, Peng G W, Chow G M, Kawazoe Y, Liu B H, Yin J H and Thongmee S 2007 Phys. Rev. B 76 224402
[45] Tian L, Yep L Y, Ong T T, Yi J, Ding J and Vittal J J 2009 Cryst. Growth Des. 9 352
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!