Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 106102    DOI: 10.1088/1674-1056/25/10/106102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Self-compliance multilevel storage characteristic in HfO2-based device

Xiao-Ping Gao(高晓平)1, Li-Ping Fu(傅丽萍)2, Chuan-Bing Chen(陈传兵)3, Peng Yuan(袁鹏)3, Ying-Tao Li(李颖弢)3
1 Gansu Key Laboratory of Sensor and Sensor Technology, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China;
2 Cuiying Honors College, Lanzhou University, Lanzhou 730000, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  

In this paper, the self-compliance bipolar resistive switching characteristic of an HfO2-based memory device with Ag/HfO2/Au structure for multilevel storage is investigated. By applying a positive voltage, the dual-step set processes corresponding to three stable resistance states are observed in the device. The multilevel switching characteristics can still be observed after 48 hours. In addition, the resistance values of all the three states show negligible degradation over 104 s, which may be useful for the applications in nonvolatile multilevel storage.

Keywords:  resistive switching      resistive random access memory      multilevel      self-compliance  
Received:  14 May 2016      Revised:  06 June 2016      Accepted manuscript online: 
PACS:  61.72.jd (Vacancies)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.40.Rw (Metal-insulator-metal structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61664001, 61574070, and 61306148) and the Application Research and Development Plan of Gansu Academy of Sciences, China (Grant Nos. 2015JK-11 and 2015JK-01).

Corresponding Authors:  Ying-Tao Li     E-mail:  li_yt06@lzu.edu.cn

Cite this article: 

Xiao-Ping Gao(高晓平), Li-Ping Fu(傅丽萍), Chuan-Bing Chen(陈传兵), Peng Yuan(袁鹏), Ying-Tao Li(李颖弢) Self-compliance multilevel storage characteristic in HfO2-based device 2016 Chin. Phys. B 25 106102

[1] Waser R and Aono M 2007 Nat. Mater. 6 833
[2] Choi S J, Lee J H, Yang W Y, Kim T W and Kim K H 2009 IEEE Electron Dev. Lett. 30 451
[3] Lin C C, Tu B C, Lin C C, Lin C H and Tseng T Y 2006 IEEE Electron Dev. Lett. 27 725
[4] Li Y T, Long S B, Lv H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
[5] Li Y T, Long S B, Zhang M H, Liu Q, Shao L B, Zhang S, Wang Y, Zuo Q Y, Liu S and Liu M 2010 IEEE Electron Dev. Lett. 31 117
[6] Yang W Y and Rhee S W 2007 Appl. Phys. Lett. 91 232907
[7] Fang Z, Yu H Y, Li X, Singh N, Lo G Q and Kwong D L 2011 IEEE Electron Dev. Lett. 32 566
[8] Zhang H W, Liu L F, Gao B, Qiu Y J, Liu X Y, Lu J, Jing Lu, Han R Q, Kang J F and Yu B 2011 Appl. Phys. Lett. 98 042105
[9] Wang Y, Liu Q, Long S B, Wang W, Wang Q, Zhang M H, Zhang S, Li Y T, Zuo Q Y, Yang J H and Liu M 2010 Nanotechnology 21 045202
[10] Li Y T, Yuan P, Fu L P, Li R R, Gao X P, Xiaoping Gao and Tao C L 2015 Nanotechnology 26 391001
[11] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F C, Lien H and Tsai M J 2008 IEDM Tech. Dig. 297
[12] Russo U, Kamalanathan D, Ielmini D, Lacaita A L and Kozicki M N 2009 IEEE Trans. Electron Dev. 56 1040
[13] Sun X, Sun B, Liu L, Xu N, Liu X, Han R, Kang J, Xiong G and Ma T P 2009 IEEE Electron Dev. Lett. 30 334
[14] Lee D, Choi H, Sim H, Choi D, Hwang H, Lee M J, Seo S A and Yoo I K 2005 IEEE Electron Dev. Lett. 26 719
[15] Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L and Liu M 2012 Adv. Mater. 24 1844
[16] Fang T N, Kaza S, Haddad S, Chen A, Wu Y, Lan Z, Avanzino S, Liao D, Gopalan C, Choi S, Mahdavi S, Buynoski M, Lin Y, Marrian C, Bill C, Vanbuskirk M and Taguchi M 2006 IEDM Tech. Dig. 789
[17] Russo U, Ielmini D, Cagli C, Lacaita A L, Spiga S, Wiemer C, Perego M and Fanciulli M 2007 IEDM Tech. Dig. 775
[18] Sun P X, Li L, Lu N D, Li Y T, Wang M, Xie H W, Liu S and Liu M 2014 J. Comput. Electron. 13 432
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[3] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[6] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
[7] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[8] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[9] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[10] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[11] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[12] Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures
Hao-Nan Liu(刘浩男), Xiao-Xia Suo(索晓霞), Lin-Ao Zhang(张林奥), Duan Zhang(张端), Han-Chun Wu(吴汉春), Hong-Kang Zhao(赵宏康), Zhao-Tan Jiang(江兆潭), Ying-Lan Li(李英兰), Zhi Wang(王志). Chin. Phys. B, 2018, 27(2): 027104.
[13] Analysis of tail bits generation of multilevel storage in resistive switching memory
Jing Liu(刘璟), Xiaoxin Xu(许晓欣), Chuanbing Chen(陈传兵), Tiancheng Gong(龚天成), Zhaoan Yu(余兆安), Qing Luo(罗庆), Peng Yuan(袁鹏), Danian Dong(董大年), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2018, 27(11): 118501.
[14] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[15] Atomic crystals resistive switching memory
Chunsen Liu(刘春森), David Wei Zhang(张卫), Peng Zhou(周鹏). Chin. Phys. B, 2017, 26(3): 033201.
No Suggested Reading articles found!