Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054202    DOI: 10.1088/1674-1056/28/5/054202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of Airy beams in parity-time symmetric optical lattices

Rui-Hong Chen(陈睿弘)1, Wei-Yi Hong(洪伟毅)2
1 Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510631, China;
2 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Abstract  

We investigate the dynamics of airy beams propagating in the parity-time (PT) symmetric optical lattices in linear and nonlinear regimes, respectively. For the linear propagation, the position of the channel guided by the PT lattice can be shifted by tuning the lattice frequency. The underlying physical mechanism of this phenomenon is also discussed. An interesting phenomenon is found in the nonlinear regime in that the airy beam becomes a tilt channel with several Rayleigh lengths. These findings create new opportunities for optical steering and manipulations.

Keywords:  parity-time symmetry, Airy beam, nonlinear Schrö      dinger equation, optical lattices  
Received:  22 July 2018      Revised:  02 February 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  43.25.+y (Nonlinear acoustics)  
Corresponding Authors:  Wei-Yi Hong     E-mail:  hongwy@m.scnu.edu.cn

Cite this article: 

Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅) Dynamics of Airy beams in parity-time symmetric optical lattices 2019 Chin. Phys. B 28 054202

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Ahmed Z 2001 Phys. Lett. A 282 343
[3] Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095
[4] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[5] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[6] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[7] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2010 Phys. Rev. A 81 063807
[8] Zhu X, Wang H, Zheng L X, Li H and He Y J 2011 Opt. Lett. 36 2680
[9] Guo D, Xiao J, Li H and Dong L 2016 Opt. Lett. 41 4457
[10] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[11] Dai C Q and Wang Y Y 2014 Laser Phys. 24 035401
[12] Liu J B, Xie X T, Shan C J, Liu T K, Lee R K and Wu Y 2015 Laser Phys. 25 015102
[13] He Y J, Zhu X, Mihalache D, Liu J L and Chen Z X 2012 Phys. Rev. A 85 013831
[14] Jones H F 2011 J. Phys. A 44 345302
[15] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[16] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2008 Opt. Lett. 33 207
[17] Siviloglou G A, Broky J and Dogariu A 2007 Phys. Rev. Lett. 99 213901
[18] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[19] Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N and Chen Z G 2011 Opt. Lett. 36 2883
[20] Zheng Z, Zhang B F, Chen H, Ding J and Wang H T 2011 Appl. Opt. 50 43
[21] Baumgartl J, Mazilu M and Dholakia K 2008 Nature Photon. 2 675
[22] Polynkin P, Kolesik M and Moloney J 2009 Phys. Rev. Lett. 103 123902
[23] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A and Christodoulides D N 2009 Science 324 229
[24] Rose P, Diebel F, Boguslawski M and Denz C 2013 Optics and Photonics News 24 45
[25] Li J X, Fan X L, Zang W P and Tian J G 2011 Opt. Lett. 36 648
[26] Li J X, Zang W P and Tian J G 2010 Opt. Express 18 7300
[27] Choi D, Lee K, Hong K, Lee I M, Kim K Y and Lee B 2013 Opt. Express 21 18797
[28] Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G and Tzortzakis S 2012 Phys. Rev. A 86 013842
[29] Driben R, Konotop V V and Meier T 2014 Opt. Lett. 39 5523
[30] Pasiskevicius V 2009 Nature Photon. 3 374
[31] Xu Y Q, Zhou G Q, Zhang L J and Ru G Y 2015 Laser Phys. 25 085005
[1] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[6] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[7] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[12] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[15] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
No Suggested Reading articles found!