|
|
Calculations of atomic polarizability for beryllium using MCDHF method |
Hui Dong(董辉)1, Jun Jiang(蒋军)1,†, Zhongwen Wu(武中文)1, Chenzhong Dong(董晨钟)1, and Gediminas Gaigalas2 |
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 Institute of Theoretical Physics and Astronomy, Vilnius University, Saul\.etekio Avenue 3, Vilnius 10222, Lithuania |
|
|
Abstract Based on the fully relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) method and the corresponding program package GRASP2018, a new program for calculating the polarizabilities is developed. As the first application, the static electric-dipole polarizabilities of the ground state 2s2 1S0 and excited state 2s2p 3P0 of beryllium are calculated. By means of these polarizabilities, the blackbody radiation (BBR) shift of the 2s2p $^3P_0 \to \rm 2s^2$ 1S0 clock transition is determined. The present results agree very well with other available theoretical results.
|
Received: 11 November 2020
Revised: 27 December 2020
Accepted manuscript online: 07 January 2021
|
PACS:
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11774292, 11804280, 11874051, and 11864036), the Scientific Research Funding of the Higher Education Institutions of Gansu Province of China (Grant No. 2018A-002), and the Major Project of the Research Ability Promotion Program for Young Scholars of Northwest Normal University of China (Grant No. NWNU-LKQN2019-5). |
Corresponding Authors:
†Corresponding author. E-mail: phyjiang@yeah.net
|
Cite this article:
Hui Dong(董辉), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), and Gediminas Gaigalas Calculations of atomic polarizability for beryllium using MCDHF method 2021 Chin. Phys. B 30 043103
|
1 Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B 43 202001 2 Porsev S G, Beloy K and Derevianko A 2009 Phys. Rev. Lett. 102 181601 3 Tsigutkin K, Dounas-Frazer D, Family A, Stalnaker J E, Yashchuk V V and Budker D 2009 Phys. Rev. Lett. 103 071601 4 Akatsuka T, Takamoto M and Katori H 2010 Phys. Rev. A 81 023402 5 Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001 6 Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D and Oates C W 2012 Phys. Rev. Lett. 108 153002 7 Safronova M S, Porsev S G and Clark C W 2012 Phys. Rev. Lett. 109 230802 8 Safronova M S, Porsev S G, Safronova U I, Kozlov M G and Clark C W 2013 Phys. Rev. A 87 012509 9 Dalgarno A and Davison W 1967 Mol. Phys. 13 479 10 Kelly H P 1966 Phys. Rev. 152 62 11 Singh Y, Sahoo B K and Das B P 2013 Phys. Rev. A 88 062504 12 Mani B K, Latha K V P and Angom D 2009 Phys. Rev. A 80 062505 13 Chattopadhyay S, Mani B K and Angom D 2012 Phys. Rev. A 86 062508 14 Kàllay M, Nataraj H S, Sahoo B K, Das B P and Visscher L 2011 Phys. Rev. A 83 030503 15 Tang Y B, Lou B Q and Shi T Y 2017 Phys. Rev. A 96 022513 16 Jiang J, Mitroy J, Cheng Y and Bromley M W J 2016 Phys. Rev. A 94 062514 17 Wang X, Jiang J, Xie L Y, Zhang D H and Dong C Z 2016 Phys. Rev. A 94 052510 18 Cheng Y, Jiang J and Mitroy J 2013 Phys. Rev. A 88 022511 19 Mitroy J 2010 Phys. Rev. A 82 052516 20 Froese Fischer C, Gaigalas G, Jönsson P and Bieroń J 2019 Comp. Phys. Comm. 237 184 21 Ben Nasr S and Jelassi H 2020 J. Quant. Spectrosc. Radiat. Trans. 246 106880 22 Stone N, Stone J and Jönsson P 2010 Hyperfine Interact. 197 29 23 Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comp. Phys. Comm. 235 433 24 Gamrath S, Palmeri P, Quinet P, Bouazza S and Godefroid M 2018 J. Quant. Spectrosc. Radiat. Trans. 218 38 25 Fischer C and Jönsson P 2001 J. Mol. Struct. 537 55 26 El-Sayed F J. Quant. Spectrosc. Radiat. Trans. 107237 27 Jönsson P, Alkauskas A and Gaigalas G 2013 At. Data Nucl. Data Tables 99 431 28 Chung K T and Zhu X W 1993 Phys. Rev. A 48 1944 29 Machholm M, Julienne P S and Suominen K A 2001 Phys. Rev. A 64 033425 30 Daley A J, Boyd M M, Ye J and Zoller P 2008 Phys. Rev. Lett. 101 170504 31 Wen J, Travis J C, Lucatorto T B, Johnson B C and Clark C W 1988 Phys. Rev. A 37 4207 32 Puchalski M, Pachucki K and Komasa J 2014 Phys. Rev. A 89 012506 33 Grant I P2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer Series on Atomic, Optical, and Plasma Physics)(New York: Springer-Verlag) 34 Kaneko S 1977 J. Phys. B 10 3347 35 Olsen J, Roos B O, Jørgensen P and Jensen H J A 1988 J. Chem. Phys. 89 2185 36 Sturesson L, Jönsson P and Fischer C F 2007 Comp. Phys. Comm. 177 539 37 Kozlov M G and Porsev S G 1999 Eur. Phys. J. D 5 59 38 Kramida A, Yu Ralchenko, Reader J and NIST ASD Team2019 NIST Atomic Spectra Database (ver. 5.7.1) 39 Froese Fischer C and Tachiev G 2004 At. Data Nucl. Data Tables 87 1 ISSN 0092-640X 40 Porsev S G and Derevianko A 2002 Phys. Rev. A 65 020701 41 Reistad N and Martinson I 1986 Phys. Rev. A 34 2632 42 Schnabel R and Kock M 2000 Phys. Rev. A 61 062506 43 Themelis S I and Nicolaides C A 1995 Phys. Rev. A 52 2439 44 Shukla N, Arora B, Sharma L and Srivastava R 2020 Phys. Rev. A 102 022817 45 Patil S H 2000 Eur. Phys. J. D 10 341 46 Derevianko A, Porsev S G and Babb J F 2010 At. Data Nucl. Data Tables 96 323 47 Komasa J 2002 Chem. Phy. Lett. 363 307 48 Komasa J 2001 Phys. Rev. A 65 012506 49 Bendazzoli G L and Monari A 2004 Chem. Phys. 306 153 50 Sahoo B K and Das B P 2008 Phys. Rev. A 77 062516 51 Mitroy J and Bromley M W J 2003 Phys. Rev. A 68 052714 52 Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|