Special Issue:
TOPICAL REVIEW — Fundamental physics research in lithium batteries
|
TOPICAL REVIEW—Fundamental physics research in lithium batteries |
Prev
Next
|
|
|
Li-ion batteries: Phase transition |
Peiyu Hou(侯配玉)1, Geng Chu(褚赓)2, Jian Gao(高健)2, Yantao Zhang(张彦涛)1, Lianqi Zhang(张联齐)1 |
1. Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Progress in the research on phase transitions during Li+ extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li+ insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties.
|
Received: 05 June 2015
Revised: 28 August 2015
Accepted manuscript online:
|
PACS:
|
61.66.Fn
|
(Inorganic compounds)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050906) and the National Natural Science Foundation of China (Grant Nos. 51272175 and 21301127). |
Corresponding Authors:
Lianqi Zhang
E-mail: tianjinzhanglq@163.com
|
Cite this article:
Peiyu Hou(侯配玉), Geng Chu(褚赓), Jian Gao(高健), Yantao Zhang(张彦涛), Lianqi Zhang(张联齐) Li-ion batteries: Phase transition 2016 Chin. Phys. B 25 016104
|
[1] |
Luo C H and Martin M 2007 J. Mater. Sci. 42 1955
|
[2] |
Tatsumisago M, Hama S, Hayashi A, Morimoto H and Minami T 2002 Solid State Ion. 154 635
|
[3] |
Yamada A, Chung S C and Hinokuma K 2001 J. Electrochem. Soc. 148 A224
|
[4] |
Chung S Y, Bloking J T and Chiang Y M 2002 Nat. Mater. 1 123
|
[5] |
Zhong K F, Zhang B, Luo S H, Wen W, Li H, Huang X and Chen L 20011 J. Power Sources 196 6802
|
[6] |
Feng G X, Li L F, Liu J Y, Liu N, Li H, Yang X Q, Huang X J, Chen L Q, Nam K W and Yoon W S 2009 J. Mater. Chem. 19 2993
|
[7] |
Amdouni N, Zaghib K, Gendron F, Mauger A and Julien C M 2006 Ionics 12 117
|
[8] |
Wang J W, He Y, Fan F, Liu X H, Xia S, Liu Y, Thomas H C, Li H, Huang J Y, Mao S X and Zhu T 2013 Nano Lett. 13 709
|
[9] |
Gu L, Zhu C B, Li H, Yu Y, Li C, Tsukimoto S, Maier J and Ikuhara Y 2011 J. Am. Chem. Soc. 133 4661
|
[10] |
Gao J, Lv Y and Li H 2013 Energy Storage Science and Technology 2 250
|
[11] |
Kang B and Ceder G 2009 Nature 458 190
|
[12] |
Ong S P, Chevrier V L, Hautier G, Jain A, Moore C, Kim S, Ma X and Ceder G 2011 Energy Environ. Sci. 4 3680
|
[13] |
Chen H L, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y and Ceder G 2012 Chem. Mater. 24 2009
|
[14] |
Ong S P, Wang L, Kang B and Ceder G 2008 Chem. Mater. 20 1798
|
[15] |
Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 Mat. Res. Bull. 15 783
|
[16] |
Kang K, Meng Y S, Breger J, Grey C P and Ceder G 2006 Science 311 977
|
[17] |
Reimers J N and Dahn J R 1992 J. Electrochem. Soc. 139 2091
|
[18] |
Reimers J N, Dahn J R and Vonsacken U 1993 J. Electrochem. Soc. 140 2752
|
[19] |
Ohzuku T and Ueda 1994 J. Electrochem. Soc. 141 2972
|
[20] |
Shao H Y, Levasseur S, Weill F and Delmas C 2003 J. Electrochem. Soc. 150 A366
|
[21] |
Menetrier M, Saadoune I, Levasseur S and Delmas C 1999 J. Mater. Chem. 9 1135
|
[22] |
Marianetti C A, Kotliar G and Ceder G 2004 Nat. Mater. 3 627
|
[23] |
Amatucci G G, Tarascon J M and Klein L C 1996 J. Electrochem. Soc. 143 1114
|
[24] |
Van D V A, Aydinol M K and Ceder G 1998 J. Electrochem. Soc. 145 2149
|
[25] |
Carlier D, Van der Ven A, Delmas C and Ceder G 2003 Chem. Mater. 15 2651
|
[26] |
Delmas C, Braconnier J J and Hagenmuller P 1982 Mater. Res. Bull. 17 117
|
[27] |
Carlier D, Saadoune I, Croguennec, Menetrier L M, Suard E and Delmas C 2001 Solid State Ionics 144 263
|
[28] |
Lu X, Sun Y, Jian Z, He X, Gu L, Hu, Y S, Li H, Wang Z, Chen W, Duan X, Chen L, Maier J, Tsukimoto S and Ikuhara Y 2012 Nano Lett. 12 6192
|
[29] |
Barker J, Pynenburg R, Koksbanc R and Ssidi M Y 1996 Electrochim. Acra 41 248
|
[30] |
Van der Ven A and Ceder G 2001 J. Power Sources 97 529
|
[31] |
Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
|
[32] |
Padhi A K, Nanjundaswarmy K S, Masquelier C, Okada S and Goodenough J B 1997 J. Electrochem. Soc. 144 1609
|
[33] |
Van der Ven A, Bhattacharya J and Belak A A 2013 Acc. Chem. Res. 46 1216
|
[34] |
Santoro R P and Newman R E 1967 Acta Crystallogr. 22 344
|
[35] |
Andersson A S and Thomas J O 2001 J. Power Sources 97 498
|
[36] |
Rousse G, Rodriguez-Carvajal J, Patoux S and Masquelier C 2003 Chem. Mater. 15 4082
|
[37] |
Kang B and Ceder G 2009 Nature 458 190
|
[38] |
Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J B, Morcette M, Tarascon J M and Masquelier C 2005 J. Electrochem. Soc. 152 A913
|
[39] |
Yonemura M, Yamada A, Takei Y, Sonoyama N and Kanno R 2004 J. Electrochem. Soc. 151 A1352
|
[40] |
Prosini P P, Lisi M, Zane D and Pasquali M 2002 Solid State Ion. 148 45
|
[41] |
Amin R, Balaya P and Maier J 2007 Electrochem. Solid-State Lett. 10 A13
|
[42] |
Amin R, Lin C T and Maier J 2008 Phys. Chem. Chem. Phys. 10 3524
|
[43] |
Peng B, Cogswell D A and Bazant M Z 2011 Nano Lett. 11 4890
|
[44] |
Andersson A S, Kalska B, Häggström L and Thomas J O 2000 Solid State Ionics 130 41
|
[45] |
Badi A P, Wagemaker M, Ellis B L, Singh D P, Borghols W J H, Kan W H, Ryan D H, Mulder F M and Nazar L F 2011 J. Mater. Chem. 21 10085
|
[46] |
Andersson A S and Thomas J O 2001 J. Power Sources 498 97
|
[47] |
Srinivasan V and Newman J 2004 J. Electrochem. Soc. 151 A1517
|
[48] |
Delmas C, Maccario M, Croguennec L, Cras F L and Weill F 2008 Nat. Mater. 7 665
|
[49] |
Love C T, Korovina A, Patridge C J, Swider-Lyons K E, Twigg M E and Ramaker D E 2013 J. Electrochem. Soc. 160 A3153
|
[50] |
Delacourt C, Poizot P, Tarascon J M and Masquelier C 2005 Nat. Mater. 4 254
|
[51] |
Dodd J L, Yazami R and Fultz B 2006 Electrochem. Solid-State Lett. 9 A151
|
[52] |
Van der Ven A, Garikipati K, Kim S and Wagemaker M 2009 J. Electrochem. Soc. 156 A949
|
[53] |
Chen G Y, Song X Y and Richardson T J 2006 Electrochem. Solid-State Lett. 9 A295
|
[54] |
Gu L, Zhu C B, Li H, Yu Y, Li C L, Tsukimoto S, Maier J and Ikuhara Y C 2011 J. Am. Chem. Soc. 133 4661
|
[55] |
Orikasa Y, Maeda T, Koyama Y, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y and Ogumi Z 2013 J. Am. Chem. Soc. 135 5497
|
[56] |
Orikasa Y, Maeda T, Koyama Y, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y and Ogumi Z 2013 Chem. Mater. 25 1032
|
[57] |
Van Der Ven A, Bhattacharya J and Belak A A 2011 Acc. Chem. Res. 46 1216
|
[58] |
Van der Ven A and Wagemaker M 2009 Elecrochem. Commun. 11 881
|
[59] |
Sun Y, Lu X, Xiao R J, Li H and Huang X J 2012 Chem. Mater. 24 4693
|
[60] |
Yu X Q, Wang Q, Zhou Y N, Li H, Yang X Q, Nam K W, Ehrlich S N, Khalid S and Meng Y S 2012 Chem. Commun. 48 11537
|
[61] |
Weichert K, Sigle W, Aken P A V, Jamnik J, Zhu C B, Amin R, Acarturk T, Starke U and Maier J 2012 J. Am. Chem. Soc. 134 2988
|
[62] |
Vandermarel C, Vinke G J B and Vanderlugt W 1985 Solid State Commun. 54 917
|
[63] |
Sharma R A and Seefurth R N 1976 J. Electrochem. Soc. 123 C239
|
[64] |
Seefurth R N and Sharma R A 1977 J. Electrochem. Soc. 124 C136
|
[65] |
Seefurth R N and Sharma R A 1980 J. Electrochem. Soc. 127 1101
|
[66] |
Wen C J and Huggins R A 1981 J. Solid State Chem. 37 271
|
[67] |
Li H, Huang X J, Chen L Q, Zhou G, Zhang Z, Yu D, Mo Y J and Pei N 2000 Solid State Ionics 135 181
|
[68] |
Limthongkul P, Jang Y I, Dudney N J and Chiang Y M 2003 Acta Materialia. 51 1103
|
[69] |
Obrovacz M N and Christensen L 2004 Electrochem. Solid-State Lett. 7 A93
|
[70] |
Hatchard T D and Dahn J R 2004 J. Electrochem. Soc. 151 A838
|
[71] |
Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon J M and Grey C P 2009 J. Am. Chem. Soc. 131 9239
|
[72] |
Key B, Morcrette M, Tarascon J M and Grey C P 2011 J. Am. Chem. Soc. 133 503
|
[73] |
Park C M, Kim J H, Kim H and Sohn H J 2010 Chem. Soc. Rev. 39 3115
|
[74] |
Dimov N, Kugino S and Yoshio M 2003 Electrochim. Acta 48 157
|
[75] |
Havenbergh K V, Turner S, Driesen K, Bridel J S and Tendeloo G V 2015 Energy Technol. 3 699
|
[76] |
Wang C M, Li X, Wang Z, Xu W, Liu J, Gao F, Kovarik Li, Zhang J G, Howe J, Burton D J, Liu Z, Xiao X, Thevuthasan S and Baer D R 2012 Nano Lett. 12 1624
|
[77] |
Li H, Zhu G Y, Huang X J and Chen L Q 2000 J. Mater. Chem. 10 693
|
[78] |
Li H, Shi L, Lu W, Huang X and Chen L 2001 J. Electrochem. Soc. 148 A915
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|