Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010508    DOI: 10.1088/1674-1056/25/1/010508
GENERAL Prev   Next  

Study on bi-directional pedestrian movement using ant algorithms

Sibel Gokce and Ozhan Kayacan
Department of Physics, Faculty of Arts and Sciences, Celal Bayar University, 45140, Muradiye, Manisa, Turkey
Abstract  A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones' on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians' walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following'. At some densities, the relationships of velocity-density and flux-density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones.
Keywords:  cellular automata      computer simulation      bi-directional pedestrian flow      phase transition  
Received:  06 March 2015      Revised:  24 August 2015      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.50.+q (Lattice theory and statistics)  
  05.70.Jk (Critical point phenomena)  
Corresponding Authors:  Ozhan Kayacan     E-mail:  ozhan.kayacan@cbu.edu.tr

Cite this article: 

Sibel Gokce, Ozhan Kayacan Study on bi-directional pedestrian movement using ant algorithms 2016 Chin. Phys. B 25 010508

[1] Helbing D and Molnár P 1995 Phys. Rev. E 51 4282
[2] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[3] Lakoba T I, Kaup D J and Finkelstein N M 2005 Simulation 81 339
[4] Yu W, Chen R, Dong L and Dai S 2005 Phys. Rev. E 72 026112
[5] Johansson A, Helbing D and Shukla P 2007 Advances in Complex Systems 10 27188
[6] Parisi D R, Gilman M and Moldovan H 2009 Physica A 388 3600
[7] Xiaoping Z, Wei L and Chao G 2010 Physica A 389 2177
[8] Löhner R 2010 Applied Mathematical Modelling 34 366
[9] Chraibi M, Seyfried A and Schadschneider A 2010 Phys. Rev. E 82 046111
[10] Chraibi M, Wagoum U K, Schadschneider A and Seyfried A 2011 Networks and Heterogeneous Media 692 425
[11] Hughes R L 2002 Trans. Res. Part B 36 507
[12] Asano M, Sumalee A, Kuwahara M and Tanaka S 2007 Trans. Res. Part B 2039 42
[13] Jiang Y Q, Xiong T, Wong S C Shu C W, Zhang P, Zhang M P and Lam W H K 2009 Acta Math. Sci 29B 1541
[14] Huang L Wong S C Zhang M, Shu C W and Lam W H K 2009 Transportation Research Part B: Methodological 43 127
[15] Xiong T, Zhang M P, Shu C W, Wong S C and Zhang P 2011 Comput. Aided Civ. Inf. 26 298
[16] Jiang Y, Wong S C, Zhang P, Liu R, Duan Y and Choi K 2012 Applied Mathematics and Computation 218 6135
[17] Burks A W 1970 Von Neumann's Self-reproducing Automata (Champaign: University of Illinois Press) pp. 3-64
[18] Wolfram S 1986 J. Stat. Phys. 45 471
[19] Wolfram S 1986 Theory and Applications of Cellular Automata (Singapore: World Scientific)
[20] Wolfram S 1994 Cellular Automata and Complexity (MA: Addison-Wesley)
[21] Kai N and Michael S 1992 J. Phys. I 2 2221
[22] Fukui M and Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868
[23] Lárraga M E and Alvarez-Icaza L 2014 Chin. Phys. B 23 050701
[24] Biham O, Middelton A A and Levine D A 1992 Phys. Rev. A 46 R6124
[25] Cuesta J A, Matinez F C, Molera J M and Sanchez A 1993 Phys. Rev. E 48 4175
[26] Nagatani T 1993 Phys. Rev. E 48 3290
[27] Chung K H, Hui P M and Gu G Q 1995 Phys. Rev. E 51 772
[28] Watanabe M S 2003 Physica A 324 707
[29] Watanabe M S 2006 Commun. Nonlinear Sci. Numer. Simul. 11 624
[30] Gu G Q, Zhang W, Qian X J and Zhang Y 2004 J. Hydrodyn. Ser. B 1 45
[31] Braun O M and Hu B 2005 Phys. Rev. E 71 031111
[32] Huang D W and Huang W N 2006 Physica A 370 747
[33] Ermentrout G B and Edlestein L 1993 Journal of Theorical Biology 160 97
[34] Shi X Q, Wu Y Q, Li H and Zhong R 2007 Physica A 385 659
[35] Mitchell M 2009 Complexity a Guided Tour (New York: Oxford University Press)
[36] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[37] Dijkstra J, Jessurun J and Timmermans H 2001 A Multi-agent Cellular Automata Model of Pedestrian Movement, in: Pedestrian and Evacuation Dynamics (Verlag Berlin: Springer) pp. 173-181
[38] Perez G J, Tapang G and Lim M 2002 Physica A 312 609
[39] Kong X J 2007 Research on Modeling and Characteristics Analysis of Traffic Flow Based on Cellular Automaton (Doctoral Dissertation of Beijing Jiaotong University) (in Chinese)
[40] Yue H 2008 Study on the Simulation Model of Pedestrian Flow Based on Cellular Automata (Doctoral Dissertation of Beijing Jiaotong University) (in Chinese)
[41] Gotoh H and Harada E 2012 Safety Science 50 326
[42] Li L L, Gang R, Wei W, Yi W and Meng P Z 2014 Chin. Phys. B 23 088901
[43] Burstedde C Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[44] Yuan W F and Tan K H 2007 Physica A 379 250
[45] Zhou S Q, Meng J X and Liu Z 2009 Computer Simulation 06 191
[46] Helbing D, Molnar P, Farkas I J and Bolay K 2001 Environment and Planning B: Planning and Design 28 361
[47] Schadschneider A, Kircher A and Nishinari K 2002 Lecture Notes in Computer Science 2493 239
[48] Xiong T, Zhang P, Wong S C, Shu C W and Zhang M 2011 Chin. Phys. Lett. 28 108901
[49] Schadschneider A, Kirchner A and Nishinari K 2003 Applied Bionics and Biomechanics 1 11
[50] Chowdhury D, Guttal V, Nishinari K and Schadschneider A 2002 J. Phys. A 35 573
[51] Nishinari K, Chowdhury D and Schadschneider A 2003 Phys. Rev. E 67 036120
[52] John A, Schadschneider A, Chowdhury D and Nishinari K 2004 Journal of Theoretical Biology 231 279
[53] Shiwakoti N, Sarvi M Rose G and Burd M 2009 Transportation Research Record 2137 31
[54] Shiwakoti N, Sarvi M Rose G and Burd M 2010 Transportation Research Record 2196 176
[55] Nowak S and Schadschneider A 2012 Phys. Rev. E 85 066128
[56] Suma Y, Yanagisawa D and Nishinari K 2012 Physica A 391 248
[57] Duncan E J and Francis L W R 2006 Current Biology 16 570
[58] Kayacan O 2001 Physica A 390 1111
[59] Kunduraci T and Kayacan O 2013 Physica A 392 1946
[60] Gokce S and Kayacan O 2013 Pramana 80 909
[61] Rex M and Löwen H 2007 Phys. Rev. E 75 051402
[62] Kerner B S 2004 The Physics of Traffic (Berlin: Springer)
[63] Kerner B S 2009 Introduction to Modern Traffic Flow Theory and Control (Heidelberg: Springer)
[64] Schadschneider A, Chowdhury D and Nishinari K 2010 Stochastic Transport in Complex Systems: From Molecules to Vehicles (New York: Elsevier)
[65] Kerner B S 1998 Traffic Flow: Experiment and Theory (Singapore: Springer) pp. 239-267
[66] Kerner B S 1999 Phys. World 12 25
[67] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 4275
[68] Yue H, Hao H, Chen X and Shao C 2007 Physica A 384 567
[69] Jian L, Lizhong Y and Daoliang Z 2005 Physica A 354 619
[70] Weifeng F, Lizhong Y and Weicheng F 2003 Physica A 321 633
[71] Yue H Guan H Zhang J and Shao C 2007 Physica A 389 527
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!