Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097505    DOI: 10.1088/1674-1056/24/9/097505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of RE-rich phase distribution in initial alloy on anisotropy of HDDR powders

Cai Ling-Wen (蔡岭文)a b, Guo Shuai (郭帅)a b, Ding Guang-Fei (丁广飞)a b, Chen Ren-Jie (陈仁杰)a b, Liu Jian (刘剑)a b, Lee Don (李东)c, Yan A-Ru (闫阿儒)a b
a Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
b Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
c University of Dayton, Dayton, OH 45469, USA
Abstract  The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination (HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting (SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders, acquiring degrees of alignment (DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy.
Keywords:  hydrogenation disproportionation desorption recombination (HDDR)      anisotropy      RE-rich phase      initial microstructure  
Received:  09 January 2015      Revised:  22 April 2015      Accepted manuscript online: 
PACS:  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51101167), the Ningbo Natural Science Foundation, China (Grant No. 2013A610075), the Ningbo Science and Technology Project, China (Grant No. 2013B10004), the Program of International Science and Technology Cooperation of China (Grant No. 2010DFB53770), the China Postdoctoral Science Foundation (Grant No. 2012M520943), the State Key Program of the National Natural Science Foundation of China (Grant No. 2011AA03A401), and the National Key Technologies R&D Program of China (Grant No. 2012BAE01B03).
Corresponding Authors:  Yan A-Ru     E-mail:  aruyan@nimte.ac.cn

Cite this article: 

Cai Ling-Wen (蔡岭文), Guo Shuai (郭帅), Ding Guang-Fei (丁广飞), Chen Ren-Jie (陈仁杰), Liu Jian (刘剑), Lee Don (李东), Yan A-Ru (闫阿儒) Influence of RE-rich phase distribution in initial alloy on anisotropy of HDDR powders 2015 Chin. Phys. B 24 097505

[1] Sepehri-Amin H, Une Y, Ohkubo T, Hono K and Sagawa M 2011 Scr. Mater. 65 396
[2] Nozawa N, Sepehri-Amin H, Ohkubo T, Hono K, Nishiuchi T and Hirosawa S 2011 J. Magn. Magn. Mater. 323 115
[3] Takeshita T and Morimoto K 1996 J. Appl. Phys. 79 5040
[4] Pal S K, Schultz L and Gutfleisch O 2014 Scr. Mater. 78 33
[5] Zhang J J, Gao H M, Yan Y, Bai X, Wang W Q, Su F and Du X B 2012 Chin. Phys. Lett. 29 057501
[6] Liu S Q, Han J Z, Du H L, Wang C S, Chen H Y and Yang Y C 2007 J. Magn. Magn. Mater. 312 337
[7] Li W F, Ohkubo T, Hono K, Nishiuchi T and Hirosawa S 2009 J. Appl. Phys. 105 07A706
[8] Kwon H W and Yu J H 2009 J. Alloys Compd. 487 138
[9] Liu M, Han G B and Gao R W 2009 J. Alloys Compd. 488 310
[10] Morimoto K, Kato K, Igarashi K and Nakayama R 2004 J. Alloys Compd. 366 274
[11] Kwon H W and Kim J H 2006 J. Magn. Magn. Mater. 304 e222
[12] Cannesan N, Brown D N, Williams A J and Harri I R 2001 J. Magn. Magn. Mater. 233 209
[13] Harris I R, Noble C and Bailey T 1985 J. Less Common Metals 106 L1
[14] Oesterreicher K and Oesterreicher H 1984 Phys. Stat. Sol. 85 K61
[15] Lin Z, Han J Z, Yang J B, Kong X P, Zhong X Y, Liu S Q, Zhang X D, Wang C S, Du H L and Yang Y C 2011 Scr. Mater. 65 206
[16] Honkura Y, Mishima C, Hamada N, Drazic G and Gutfleisch O 2005 J. Magn. Magn. Mater. 290 1282
[17] Harris I R, McGuiness P J, Jones D G R and Abell J S 1987 Phys. Scr. T19 435
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[7] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[12] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[13] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[14] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[15] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
No Suggested Reading articles found!