Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087304    DOI: 10.1088/1674-1056/24/8/087304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Charge trapping behavior and its origin in Al2O3/SiC MIS system

Liu Xin-Yu (刘新宇)a, Wang Yi-Yu (王弋宇)a, Peng Zhao-Yang (彭朝阳)a, Li Cheng-Zhan (李诚瞻)b, Wu Jia (吴佳)b, Bai Yun (白云)a, Tang Yi-Dan (汤益丹)a, Liu Ke-An (刘可安)b, Shen Hua-Jun (申华军)a
a Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
b Zhuzhou CSR Times Electric Co., Ltd, Zhuzhou 412001, China
Abstract  

Charge trapping behavior and its origin in Al2O3/SiC MOS structure are investigated by analyzing the capacitance–voltage (C–V) hysteresis and the chemical composition of the interface. The C–V hysteresis is measured as a function of oxide thickness series for an Al2O3/SiC MIS capacitor. The distribution of the trapped charges, extracted from the C–V curves, is found to mainly follow a sheet charge model rather than a bulk charge model. Therefore, the electron injection phenomenon is evaluated by using linear fitting. It is found that most of the trapped charges are not distributed exactly at the interface but are located in the bulk of the Al2O3 layers, especially close to the border. Furthermore, there is no detectable oxide interface layer in the x-ray photoelectron spectroscope (XPS) and transmission electron microscope (TEM) measurements. In addition, Rutherford back scattering (RBS) analysis shows that the width of the Al2O3/SiC interface is less than 1 nm. It could be concluded that the charge trapping sites in Al2O3/SiC structure might mainly originate from the border traps in Al2O3 film rather than the interface traps in the interfacial transition layer.

Keywords:  Al2O3      SiC      charge trapping sites      interface  
Received:  08 December 2014      Revised:  10 April 2015      Accepted manuscript online: 
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  77.55.D-  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61106080) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02305).

Corresponding Authors:  Shen Hua-Jun     E-mail:  shenhuajun@ime.ac.cn

Cite this article: 

Liu Xin-Yu (刘新宇), Wang Yi-Yu (王弋宇), Peng Zhao-Yang (彭朝阳), Li Cheng-Zhan (李诚瞻), Wu Jia (吴佳), Bai Yun (白云), Tang Yi-Dan (汤益丹), Liu Ke-An (刘可安), Shen Hua-Jun (申华军) Charge trapping behavior and its origin in Al2O3/SiC MIS system 2015 Chin. Phys. B 24 087304

[1] Li H, Dimitrijev S, Harrison H B and Sweatman D 1997 Appl. Phys. Lett. 70 2028
[2] McDonald K, Weller R A, Pantelides S T, Feldman L C, Chung G Y, Tin C C and Williams J R 2003 J. Appl. Phys. 93 2719
[3] Dhar S, Song Y W, Feldman L C, Isaacs-Smith T, Tin C C, Williams J R, Chung G, Nishimura T, Starodub D, Gustafson T and Garfunkel E 2004 Appl. Phys. Lett. 84 1498
[4] Lu C Y, Cooper J A, Tsuji T, Chung G, Wiliams J R, McDonald K and Feldman L C 2003 IEEE Trans. Electron Dev. 50 1582
[5] Chung G Y, Tin C C, Wiliams J R, McDonald K, Chanana R K, Weller R A, Pantelides S T, Feldman L C, Holland O W, Das M K and Palmour J W 2001 IEEE Electron Dev. Lett. 22 176
[6] Rozen J, Ahyi A C, Zhu X G, Williams J R and Feldman L C 2011 IEEE Trans. Electron Dev. 58 3808
[7] Fujihira K, Tarui Y, Imaizumi M, Ohtsuka K, Takami T, Shiramizu T, Kawase K, Tanimura J and Ozeki T 2005 Solid-State Electron. 49 896
[8] Yoshioka H, Nakamura T and Kimoto T 2014 J. Appl. Phys. 115 014502
[9] Noborio M, Grieb M, Bauer A J, Peters D, Friedrichs P, Suda J and Kimoto T 2011 Jpn. J. Appl. Phys. 50 090201
[10] Matocha K, Dunne G, Soloviev S and Beaupre R 2008 IEEE Trans. Electron Dev. 55 1830
[11] Lazar H R, Misra V, Johnson R S and Lucovsky G 2001 Appl. Phys. Lett. 79 973
[12] Groner M D, Elam J W, Fabreguett H H and George S M 2002 Thin Solid Films 413 186
[13] Gao K Y, Seyller T, Ley L, Ciobanu F, Pensl G, Tadich A, Riley J D and Leckey R G C 2003 Appl. Phys. Lett. 83 1830
[14] Tanner C M, Perng Y C, Frewin C, Saddow S E and Chang J P 2007 Appl. Phys. Lett. 91 203510
[15] Avice M, Grossner U, Pintilie I, Svensson B G, Servidori M, Nipoti R, Nilsen O and Fjellvag H 2007 J. Appl. Phys. 102 054513
[16] Hino S, Hatayama T, Miura N, Oomori T and Tokumitsu E 2007 Mater. Sci. Forum 556 787
[17] Moriya H, Hino S, Miura N, Oomori T and Tokumitsu E 2009 Mater. Sci. Forum 615 777
[18] Hino S, Hatayama T, Kato J, Tokumitsu E, Miura N and Oomori T 2008 Appl. Phys. Lett. 92 183503
[19] Cheong K Y, Moon J H, Eom D, Kim H J, Bahng W and Kim N K 2007 Electrochem. Solid ST 10 H69
[20] Avice M, Diplas S, Thogersen A, Christensen J S, Grossner U, Svensson B G, Nilsen O, Fjellvag H and Watts J F 2007 Appl. Phys. Lett. 91 052907
[21] Wang Y Y, Shen H J, Bai Y, Tang Y D, Liu K A, Li C Z and Liu X Y 2013 Chin. Phys. B 22 078102
[22] Kim E J, Wang L, Asbeck P M, Saraswat K C and Mclntyre P C 2010 Appl. Phys. Lett. 96 012906
[23] Hu J and Philip Wong H S 2012 J. Appl. Phys. 111 044105
[24] Lichtenwalner D J, Misra V, Dhar S, Ryu S and Agarwal A 2009 Appl. Phys. Lett. 95 152113
[25] Hatayama T, Hino S, Miura N, Oomori T and Tokumitsu E 2008 IEEE Trans. Electron Dev. 55 2041
[26] Hosoi T, Harada M, Kagei Y, Watanabe Y, Shimura T, Mitani S, Nakano Y, Nakamura T and Watanabe H 2009 Mater. Sci. Forum 615 541
[27] Avice M, Grossner U, Pintilie I, Svensson B G, Nilsen O and Fjellvag H 2006 Appl. Phys. Lett. 89 222103
[28] Hosoi T, Kagei Y, Kirino T, Mitani S, Nakano Y, Nakmura T, Shimura T and Watanabe H 2011 Mater. Sci. Forum 679 496
[29] Nicollian E H and Brews J R 2003 MOS Physics and Technology (Hoboken: Wiley) pp. 212–226 and 325–328
[30] Lin J, Gomeniuk Y Y, Monaghan S, Povey I M, Cherkaoui K, Connor E O, Power M and Hurley P K 2013 J. Appl. Phys. 114 144105
[31] Schroder D K 2006 Semiconductor Material and Device Characterization, 3rd edn. (Hoboken: Wiley) pp. 71–75
[32] Xu M, Xu C H, Ding S J, Lu H L, Zhang D W and Wang L K 2006 J. Appl. Phys. 99 074109
[33] Kerber A, Cartier E, Degraeve R, Pantisano L, Roussel P and Groeseneken G 2002 Symposium on VLSI Dig., June 11–13, 2002, Honolulu, USA, p. 76
[34] Puurunen R L and Vandervorst W 2004 J. Appl. Phys. 96 4878
[35] Frank M M, Chabal Y J and Wilk G D 2003 Appl. Phys. Lett. 82 4758
[36] Klejna S and Elliot S D 2012 J. Phys. Chem. C 116 643
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[9] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[10] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[11] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[12] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[13] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[14] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[15] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
No Suggested Reading articles found!