Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084205    DOI: 10.1088/1674-1056/24/8/084205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasma induced by pulsed laser and fabrication of silicon nanostructures

Hang Wei-Qi (黄伟其)a, Dong Tai-Ge (董泰阁)b, Wang Gang (王刚)b, Liu Shi-Rong (刘世荣)b, Huang Zhong-Mei (黄忠梅)a, Miao Xin-Jian (苗信建)a, Lv Quan (吕泉)c, Qin Chao-Jian (秦朝建)b
a Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China;
b State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, China;
c Surface Physics Laboratory, Department of Physics, Fudan University, Shanghai 200433, China
Abstract  It is interesting that in preparing process of nanosilicon by pulsed laser, the periodic diffraction pattern from plasmonic lattice structure in the Purcell cavity due to interaction between plasmons and photons is observed. This kind of plasmonic lattice structure confined in the cavity may be similar to the Wigner crystal structure. Emission manipulation on Si nanostructures fabricated by the plasmonic wave induced from pulsed laser is studied by using photoluminescence spectroscopy. The electronic localized states and surface bonding are characterized by several emission bands peaked near 600 nm and 700 nm on samples prepared in oxygen or nitrogen environment. The electroluminescence wavelength is measured in the telecom window on silicon film coated by ytterbium. The enhanced emission originates from surface localized states in band gap due to broken symmetry from some bonds on surface bulges produced by plasmonic wave in the cavity.
Keywords:  nanosilicon      pulsed laser      plasmon      photon  
Received:  18 November 2014      Revised:  06 February 2015      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.45.+h (Stimulated emission)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).
Corresponding Authors:  Hang Wei-Qi     E-mail:  sci.wqhuang@gzu.edu.cn

Cite this article: 

Hang Wei-Qi (黄伟其), Dong Tai-Ge (董泰阁), Wang Gang (王刚), Liu Shi-Rong (刘世荣), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Lv Quan (吕泉), Qin Chao-Jian (秦朝建) Plasma induced by pulsed laser and fabrication of silicon nanostructures 2015 Chin. Phys. B 24 084205

[1] Pavesi L, Negro L D, Mazzoleni C, Franzo G and Prioto E 2000 Nature 408 440
[2] Huang W Q, Huang Z M, Chen H Q and Miao X J 2012 Appl. Phys. Lett. 101 171601
[3] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R and Qin C J 2008 Appl. Phys. Lett. 92 221910
[4] Lu Z, Lockwood D J and Baribeau J 1995 Nature 378 258
[5] Brongersma M L, Polman A, Min K S, Boer E, Tambo T and Atwater H A 1998 Appl. Phys. Lett. 72 2577
[6] Walavalkar S S, Hofmann C E, Homyk A P, Henry M D, Atwater H A and Scherer A 2010 Nano. Lett. 10 4423
[7] Park N M, Kim T S and Park S J 2001 Appl. Phys. Lett. 78 2575
[8] Walters R J, Bourianoff G I and Atwater H A 2005 Nat. Mater. 4 143
[9] Negro L D, Cazzanellia M, Daldossoa N, Gaburroa Z, Pavesia L, Priolob F, Pacificib D, Franzob G and Iaconac F 2003 Physica E 16 297
[10] Ruan J, Fauchet P M, Negro L D, Cazzanelli M and Pavesi L 2003 Appl. Phys. Lett. 83 5479
[11] Schmidt P, Berndt R and Vexler M I 2007 Phys. Rev. Lett. 99 246103
[12] De Boer W D A M, Timmerman D, Dohnalova K, Yassievich I N, Zhang H, Buma W J and Gregorkiewicz T 2010 Nat. Nanotech. 5 878
[13] Savio R L, Portalupi S L, Gerace D, Shakoor A, Kruass T F, O'Faolain L, Andreani L C and Galli M 2011 Appl. Phys. Lett. 98 201106
[14] Huang W Q, Liu S R, Qin C J and Lv Q 2011 Opt. Commun. 284 1992
[15] Alima D, Estrin Y, Rich D H and Bar I 2012 J. Appl. Phys. 112 114312
[16] Khurana A 1990 Phys. Today 43 17
[17] Wigner E 1938 Trans. Faraday Soc. 34 678
[18] Huang W Q, Xu L, Wu K Y and Liu S R 2007 J. Appl. Phys. 102 053517
[19] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197
[20] Huang W Q, Zhang R T, Wang H X, Jin F, Xu L, Qin S J, Wu K Y, Liu S R and Qin C J 2008 Opt. Commun. 281 5229
[21] Huang W Q, Liu S R, Huang Z M, Miao X J, Qin C J and Lv Q 2014 Opt. Commun. 323 178
[22] Huang Z M, Huang W Q, Miao X J, Liu S R and Qin C J 2013 Opt. Commun. 309 127
[23] Seguini G, Castro C, Schammchardon S, Benassayag G, Pellegrino P and Perego M 2013 Appl. Phys. Lett. 103 023103
[24] Sun G L, Zhang L S and Hang L X 2013 Physics 42 724 (in Chinese)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[8] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[9] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[10] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[11] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[12] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[13] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[14] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!