Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 083201    DOI: 10.1088/1674-1056/24/8/083201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Photodetachment of H- near a hard wall with arbitrary laser polarization direction

Azmat Iqbala, A. Afaqb
a Department of Physics, COMSATS Institute of Information Technology, Lahore-54590, Pakistan;
b Centre of Excellence in Solid State Physics, University of the Punjab, New Campus, Lahore-54590, Pakistan
Abstract  The photodetachment of H- near a hard wall is investigated with linear polarized laser light travelling in arbitrary direction θL with respect to the z axis. An analytical formula for the total cross section is derived using semi-classical closed orbit theory, which consists of two terms, i.e., the smooth background term and the oscillatory term with an extra factor 2(θL). This factor controls oscillations in the total photodetachment cross section. The amplitude of oscillation is maximum at θL=0 when the laser polarization direction is perpendicular to the wall and it approaches zero at θL=π/2 when the laser polarization direction is parallel to the wall. It is also observed that the total cross section depends on the source–wall distance and it reduces to a free space case when the wall is at infinite distance from the source.
Keywords:  quantum interference      photodetachment process      hard wall      closed orbit theory  
Received:  07 November 2014      Revised:  04 March 2015      Accepted manuscript online: 
PACS:  32.80.Gc (Photodetachment of atomic negative ions)  
  03.65.Sq (Semiclassical theories and applications)  
  68.65.Fg (Quantum wells)  
  32.60.+i (Zeeman and Stark effects)  
Corresponding Authors:  Azmat Iqbal     E-mail:  azmatiqbal786@gmail.com

Cite this article: 

Azmat Iqbal, A. Afaq Photodetachment of H- near a hard wall with arbitrary laser polarization direction 2015 Chin. Phys. B 24 083201

[1] Blumberg W A M, Itano W M and Larson D J 1979 Phys. Rev. A 19 139
[2] Bryant H C 1987 Phys. Rev. Lett. 58 2412
[3] Rau A P R and Wong H 1988 Phys. Rev A 37 632
[4] Du M L and Delos J B 1988 Phys. Rev. A 38 1896
[5] Gao J and Delos J B 1992 Phys. Rev. A 46 1455
[6] Afaq A and Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
[7] Yang G C, Rui K K and Zheng Y Z 2007 Chin. J. Chem. Phys. 20 537
[8] Wang D H, Wang H R, Liu T Q and Liang D Q 2010 Chin. J. Phys. 48 767
[9] Rous P J and Hartley D M 1995 Chem. Phys. Lett. 236 299
[10] Sjakste J, Borisov A G and Gauyacq J P 2004 Phys. Rev. Lett. 92 156101
[11] Sjakste J, Borisov A G and Gauyacq J 2000 Phys. Rev. Lett. 92 156101
[12] Yang G C, Zheng Y Z and Chi X X 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1855
[13] Yang G C, Zheng Y Z and Chi X X 2006 Phys. Rev. A 73 043413
[14] Yang G C, Zheng Y Z and Chi X X 2007 J. Theor. Comp. Chem. 6 353
[15] Afaq A and Iftikhar Ahmed 2011 Int. J. Quantum Chem. 111 4067
[16] Haneef M, Iftikhar Ahmad, Afaq A and Rahman A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195004
[17] Haneef M, Afaq A, Iftikhar Ahmed and Rahman A 2012 Chin. Phys. Lett. 29 013202
[18] Du M L 2006 Eur. Phys. J. D 38 533
[19] Du M L 1989 Phys. Rev. A 40 4983
[20] Du M L 2004 Phys. Rev. A 70 055402
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Photodetachment dynamics of H- ion in a harmonic potential plus a time-dependent oscillating electric field
De-Hua Wang(王德华), Chuan-Juan Wang(王传娟). Chin. Phys. B, 2017, 26(10): 103202.
[14] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[15] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
No Suggested Reading articles found!