Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080502    DOI: 10.1088/1674-1056/24/8/080502
GENERAL Prev   Next  

Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization

Donato Cafagna, Giuseppe Grassi
Dipartimento Ingegneria Innovazione, Universitá del Salento, 73100 Lecce, Italy
Abstract  A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points. In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.
Keywords:  fractional-order systems      equilibrium points      hyperchaotic systems      synchronization  
Received:  21 November 2014      Revised:  19 February 2015      Accepted manuscript online: 
PACS:  05.45.Jn (High-dimensional chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Donato Cafagna, Giuseppe Grassi     E-mail:  donato.cafagna@unisalento.it;giuseppe.grassi@unisalento.it

Cite this article: 

Donato Cafagna, Giuseppe Grassi Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization 2015 Chin. Phys. B 24 080502

[1] Podlubny I 1999 Fractional differential equations (New York: Academic Press)
[2] Arena P, Caponetto R, Fortuna L and Porto D 2000 Nonlinear non-integer order circuits and systems – An introduction (Singapore: World Scientific)
[3] Cafagna D 2007 IEEE Industrial Electronics Magazine 1 35
[4] Hilfer R (ed.) 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[5] Tenreiro Machado J A, Silva M F, Barbosa R S, Jesus I S, Reis C M, Marcos M G and Galhano A F 2010 Mathematical Problems in Engineering 2010 639801
[6] Hartley T, Lorenzo C and Qammer H 1995 IEEE Trans. Circ. Sys. I 42 485
[7] Li R H and Chen W S 2013 Chin. Phys. B 22 040503
[8] Petras I 2008 Chaos, Solitons and Fractals 38 140
[9] Cafagna D and Grassi G 2008 Int. J. Bifur. Chaos 18 615
[10] Luo C and Wang X 2013 Nonlinear Dyn. 71 241
[11] Lu J G and Chen G 2006 Chaos, Solitons and Fractals 27 685
[12] Cafagna D and Grassi G 2008 Int. J. Bifur. Chaos 18 1845
[13] Cafagna D and Grassi G 2009 Int. J. Bifur. Chaos 19 339
[14] Deng W and Lu J 2006 Chaos 16 043120
[15] Cafagna D and Grassi G 2009 Int. J. Bifur. Chaos 19 3329
[16] Guckenheimer J and Holmes P 1983 Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (New York: Springer-Verlag)
[17] Silva C P 1993 IEEE Trans. Circ. Sys. I 40 675
[18] Li H, Liao X F and Luo M 2012 Nonlinear Dyn. 68 137
[19] Zhou P and Huang K 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2005
[20] Cafagna D and Grassi G 2013 Mathematical Problems in Engineering 2013 380436
[21] Wang Z, Cang S, Ochola E O and Sun Y 2012 Nonlinear Dyn. 69 531
[22] Caponetto R and Fazzino S 2013 Commun. Nonlinear Sci. Numer. Simul. 18 22
[23] Gorenflo R and Mainardi F 1997 Fractal and Fractional Calculus in Continuum Mechanics (Wien: Springer)
[24] Caputo M 1967 Geophys. J. Roy. Astronom. Soc. 13 529
[25] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[26] Diethelm K, Ford N J and Freed A D 2004 Numer. Algorithms 36 31
[27] Yang J and Qi D L 2010 Chin. Phys. B 19 020508
[28] Hu G S 2009 Chin. Phys. Lett. 26 120501
[29] Yang F Y, Leng J L and Li Q D 2014 Acta Phys. Sin. 63 080502 (in Chinese)
[30] Kuznetsov Y A 2004 Elements of Applied Bifurcation Theory (New York: Springer-Verlag)
[31] Leonov G, Kuznetsov N, Kuznetsova O, Seldedzhi S and Vagaitsev V 2011 Trans. Sys. Control 6 54
[32] Leonov G, Kuznetsov N and Vagaitsev V 2011 Phys. Lett. A 375 2230
[33] Leonov G, Kuznetsov N and Vagaitsev V 2012 Physica D 241 1482
[34] Pham V T, Volos C, Jafari S, Wei Z and Wang X 2014 Int. J. Bifur. Chaos 24 1450073
[35] Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264
[36] Wei Z 2011 Phys. Lett. A 376 102
[37] Jafari S, Sprott J and Golpayegani S 2013 Phys. Lett. A 377 699
[38] Jafari S and Sprott J 2013 Chaos, Solitons and Fractals 57 79
[39] Zhang R X and Yang S P 2010 Chin. Phys. B 19 020510
[40] Wang S, Yu Y G, Wang H and Rahmani A 2014 Chin. Phys. B 23 040502
[41] Wang L M, Tang Y G, Chai Y Q and Wu F 2014 Chin. Phys. B 23 100501
[42] Feng C F and Wang Y H 2011 Chin. Phys. Lett. 28 120504
[43] Lin L X and Peng X F 2014 Acta Phys. Sin. 63 080504 (in Chinese)
[44] Zhong D Z, Deng T and Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)
[45] Rakkiyappan R, Sivasamy R and Lakshmanan S 2014 Chin. Phys. B 23 060504
[46] Xue W, Xu J K, Cang S J and Jia H Y 2014 Chin. Phys. B 23 060501
[47] Jia B 2014 Chin. Phys. B 23 050510
[48] Wang J A, Nie R X and Sun Z Y 2014 Chin. Phys. B 23 050509
[49] Grassi G and Mascolo S 1997 IEEE Trans. Circ. Sys. I 44 1011
[50] Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. II 46 478
[51] Cafagna D and Grassi G 2011 Int. J. Bifur. Chaos 21 955
[52] Cafagna D and Grassi G 2012 Nonlinear Dyn. 70 1185
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!