Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080501    DOI: 10.1088/1674-1056/24/8/080501
GENERAL Prev   Next  

Chaotic dynamics and its analysis of Hindmarsh–Rose neurons by Shil'nikov approach

Wei Wei (魏伟), Zuo Min (左敏)
School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
Abstract  In this paper, the relationship between external current stimulus and chaotic behaviors of a Hindmarsh–Rose (HR) neuron is considered. In order to find out the range of external current stimulus which will produce chaotic behaviors of an HR neuron, the Shil'nikov technique is employed. The Cardano formula is taken to obtain the threshold of the chaotic motion, and series solution to a differential equation is utilized to obtain the homoclinic orbit of HR neurons. This analysis establishes mathematically the value of external current input in generating chaotic motion of HR neurons by the Shil'nikov method. The numerical simulations are performed to support the theoretical results.
Keywords:  Hindmarsh–Rose neuron      Shil'nikov      chaotic motion      homoclinic orbit  
Received:  18 January 2015      Revised:  13 February 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. 4132005), the National Natural Science Foundation of China (Grant No. 61403006), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. YETP1449), and the Project of Scientific and Technological Innovation Platform, China (Grant No. PXM2015_014213_000063).
Corresponding Authors:  Wei Wei     E-mail:  weiweizdh@126.com

Cite this article: 

Wei Wei (魏伟), Zuo Min (左敏) Chaotic dynamics and its analysis of Hindmarsh–Rose neurons by Shil'nikov approach 2015 Chin. Phys. B 24 080501

[1] Linaro D, Poggi T and Storace M 2010 Phys. Lett. A 374 4589
[2] Gu H G, Jia Bing and Chen G R 2013 Phys. Lett. A 377 718
[3] Wu Q J, Jin Z, Lan X and Liu Z R 2009 Chaos, Solitons and Fractals 41 2706
[4] Che Y Q, Jiang W, Tsang K M and Chan W L 2010 Nonlinear Analysis: Real World Applications 11 1096
[5] Li H Y, Wong Y K, Chan W L and Tsang K M 2010 Neurocomputing 74 230
[6] Nguyen L H and Hong K S 2013 Appl. Math. Modell. 37 2460
[7] Dalibor Hrg 2013 Neural Networks 40 73
[8] Luo R Z and Zhang C H 2015 Chin. Phys. B 24 030503
[9] Silva C P 1993 IEEE Trans. Circ. Sys. I: Fundamental Theory and Applications 40 675
[10] Zhang Q C, Tian R L and Wei W 2008 Acta Phys. Sin. 57 2799 (in Chinese)
[11] Li G L and Chen X Y 2009 Commun. Nonlinear Sci. Numer. Simul. 14 194
[12] Belozyorov V Y 2011 Appl. Math. Comput. 217 4582
[13] Zhu S Q, Miao Y, Zhang X H and Min L Q 2005 Journal of University of Science and Technology Beijing 27 635 (in Chinese)
[14] Zheng Z H and Chen G R 2006 J. Math. Anal. Appl. 315 106
[15] Deng K B and Yu S M 2013 Appl. Res. Comput. 30 3038 (in Chinese)
[16] Wang J Z, Chen Z Q and Yuan Z Z 2009 Chaos, Solitons and Fractals 42 3053
[17] Christopher P S 1993 IEEE Trans. Circ. Sys. 40 675
[1] Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model
Wei Zhang(张伟), Ming-Yuan Li(李明远), Qi-Liang Wu(吴启亮), and An Xi(袭安). Chin. Phys. B, 2021, 30(9): 090503.
[2] Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation
Hailong Zhang(张海龙), Enrong Wang(王恩荣), Fuhong Min(闵富红), Ning Zhang(张宁). Chin. Phys. B, 2016, 25(3): 030503.
[3] Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems
Feng Jing-Jing (冯晶晶), Zhang Qi-Chang (张琪昌), Wang Wei (王炜), Hao Shu-Ying (郝淑英). Chin. Phys. B, 2013, 22(9): 090503.
[4] Determination of the exact range of the value of the parameter corresponding to chaos based on the Silnikov criterion
Li Wei-Yi(李伟义), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜). Chin. Phys. B, 2010, 19(6): 060510.
[5] Shilnikov sense chaos in a simple three-dimensional system
Wang Wei(王炜), Zhang Qi-Chang(张琪昌), and Tian Rui-Lan(田瑞兰). Chin. Phys. B, 2010, 19(3): 030517.
No Suggested Reading articles found!