Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068503    DOI: 10.1088/1674-1056/24/6/068503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influences of stress on the properties of GaN/InGaN multiple quantum well LEDs grown on Si (111) substrates

Liu Ming-Gang (柳铭岗), Yang Yi-Bin (杨亿斌), Xiang Peng (向鹏), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君)
School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  

The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and AlGaN insertion layers (IL) respectively before the growth of MQWs in metal–organic chemical vapor deposition (MOCVD) system. High resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements demonstrated that the InGaN IL introduced an additional tensile stress in n-GaN, which released the strain in MQWs. It is helpful to increase the indium incorporation in MQWs. In comparison with MQWs without the IL, the wavelength shows a red-shift. AlGaN IL introduced a compressive stress to compensate the tensile stress, which reduces the indium composition in MQWs. PL measurement shows a blue-shift of wavelength. The two kinds of ILs were adopted to InGaN/GaN MQWs LED structures. The same wavelength shifts were also observed in the electroluminescence (EL) measurements of the LEDs. Improved indium homogeneity with InGaN IL, and phase separation with AlGaN IL were observed in the light images of the LEDs.

Keywords:  GaN/InGaN      LEDs      stress      indium composition  
Received:  05 December 2014      Revised:  14 January 2015      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant Nos. 2010CB923201 and 2011CB301903), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

Corresponding Authors:  Zhang Bai-Jun     E-mail:  zhbaij@mail.sysu.edu.cn
About author:  85.60.Jb; 62.40.+i; 61.72.-y

Cite this article: 

Liu Ming-Gang (柳铭岗), Yang Yi-Bin (杨亿斌), Xiang Peng (向鹏), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君) Influences of stress on the properties of GaN/InGaN multiple quantum well LEDs grown on Si (111) substrates 2015 Chin. Phys. B 24 068503

[1] Tao R C, Yu T J, Jia C Y, Chen Z Z, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 2603
[2] Ruan J, Yu T J, Jia C Y, Tao R C, Wang Z G and Zhang G Y 2009 Chin. Phys. Lett. 26 87802
[3] Ma J Z, Dong K X, Chen D J, Lu H, Chen P, Zhang R and Zheng Y D 2013 Chin. Phys. Lett. 30 068501
[4] Miller D, Chemla D, Damen T, Gossard A, Wiegmann W, Wood T and Burrus C 1984 Phys. Rev. Lett. 53 2173
[5] Ryou J H, Yoder P D, Liu J P, Lochner Z, Kim H, Choi S, Kim H J and Dupuis R D 2009 IEEE J. Sel. Top. Quantum Electron. 15 1080
[6] Zhang B and Liu Y 2014 Chin. Sci. Bull. 59 1251
[7] Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L and Jiang F Y 2013 Chin. Phys. Lett. 30 098101
[8] Zheng Z, Chen Z, Xian Y, Fan B, Huang S, Jia W, Wu Z, Wang G and Jiang H 2012 Jpn. J. Appl. Phys. 51 072101
[9] Jang C H, Sheu J K, Tsai C M, Chang S J, Lai W C, Lee M L, Ko T K, Shen C F and Shei S C 2010 IEEE J. Quantum Electron. 46 513
[10] Leem S J, Shin Y C, Kim K C, Kim E H, Sung Y M, Moon Y, Hwang S M and Kim T G 2008 J. Cryst. Growth 311 103
[11] Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J and Walker D 2002 IEEE Electron Dev. Lett. 23 535
[12] Chen C H, Su Y K, Chang S J, Chi G C, Sheu J K, Chen J F, Liu C H and Liaw Y H 2002 IEEE Electron Dev. Lett. 23 130
[13] Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H and Dupuis R D 2013 Appl. Phys. Lett. 102 041115
[14] Lu C, Wang L, Lu J, Li R, Liu L, Li D, Liu N, Li L, Cao W, Yang W, Chen W, Du W, Lee C T and Hu X 2013 J. Appl. Phys. 113 013102
[15] Nanhui N, Huaibing W, Jianping L, Naixin L, Yanhui X, Jun H, Jun D and Guangdi S 2006 J. Cryst. Growth 286 209
[16] Nanhui N, Huaibing W, Jianping L, Naixin L, Yanhui X, Jun H, Jun D and Guangdi S 2007 Solid-State Electron. 51 860
[17] Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 58502
[18] Chen H S, Lu C F, Yeh D M, Huang C F, Huang J J and Yang C C 2006 IEEE Photon. Technol. Lett. 18 2269
[19] Srinivasan S, Liu R, Bertram F, Ponce F A, Tanaka S, Omiya H and Nakagawa Y 2001 Phys. Status Solidi B 228 41
[20] Wu M F, Zhou S, Yao S, Zhao Q, Vantomme A, Van Daele B, Piscopiello E, Van Tendeloo G, Tong Y Z, Yang Z J, Yu T J and Zhang G Y 2004 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 22 920
[21] Davydov V Y, Averkiev N S, Goncharuk I N, Nelson D K, Nikitina I P, Polkovnikov A S, Smirnov A N, Jacobson M A and Semchinova O K 1997 J. Appl. Phys. 82 5097
[22] Pereira S, Correia M, Pereira E, O'Donnell K, Trager-Cowan C, Sweeney F and Alves E 2001 Phys. Rev. B 64 205311
[23] Hao M, Ishikawa H, Egawa T, Shao C L and Jimbo T 2003 Appl. Phys. Lett. 82 4702
[24] Müller M, Smith G D W, Gault B and Grovenor C R M 2012 Acta Mater. 60 4277
[25] Billeb A, Grieshaber W, Stocker D, Schubert E F and Karlicek R F 1997 Appl. Phys. Lett. 70 2790
[26] Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692
[27] Shiojiri M, Chuo C C, Hsu J T, Yang J R and Saijo H 2006 J. Appl. Phys. 99 073505
[28] Lu L, Zhu Y H, Chen Z T and Egawa T 2011 J. Appl. Phys. 109 113537
[29] McCluskey M D, Romano L T, Krusor B S, Bour D P, Johnson N M and Brennan S 1998 Appl. Phys. Lett. 72 1730
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[5] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[6] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[7] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[8] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[9] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[10] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[11] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[12] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[13] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
No Suggested Reading articles found!