INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influences of stress on the properties of GaN/InGaN multiple quantum well LEDs grown on Si (111) substrates |
Liu Ming-Gang (柳铭岗), Yang Yi-Bin (杨亿斌), Xiang Peng (向鹏), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君) |
School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and AlGaN insertion layers (IL) respectively before the growth of MQWs in metal–organic chemical vapor deposition (MOCVD) system. High resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements demonstrated that the InGaN IL introduced an additional tensile stress in n-GaN, which released the strain in MQWs. It is helpful to increase the indium incorporation in MQWs. In comparison with MQWs without the IL, the wavelength shows a red-shift. AlGaN IL introduced a compressive stress to compensate the tensile stress, which reduces the indium composition in MQWs. PL measurement shows a blue-shift of wavelength. The two kinds of ILs were adopted to InGaN/GaN MQWs LED structures. The same wavelength shifts were also observed in the electroluminescence (EL) measurements of the LEDs. Improved indium homogeneity with InGaN IL, and phase separation with AlGaN IL were observed in the light images of the LEDs.
|
Received: 05 December 2014
Revised: 14 January 2015
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
62.40.+i
|
(Anelasticity, internal friction, stress relaxation, and mechanical resonances)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant Nos. 2010CB923201 and 2011CB301903), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17). |
Corresponding Authors:
Zhang Bai-Jun
E-mail: zhbaij@mail.sysu.edu.cn
|
About author: 85.60.Jb; 62.40.+i; 61.72.-y |
Cite this article:
Liu Ming-Gang (柳铭岗), Yang Yi-Bin (杨亿斌), Xiang Peng (向鹏), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君) Influences of stress on the properties of GaN/InGaN multiple quantum well LEDs grown on Si (111) substrates 2015 Chin. Phys. B 24 068503
|
[1] |
Tao R C, Yu T J, Jia C Y, Chen Z Z, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 2603
|
[2] |
Ruan J, Yu T J, Jia C Y, Tao R C, Wang Z G and Zhang G Y 2009 Chin. Phys. Lett. 26 87802
|
[3] |
Ma J Z, Dong K X, Chen D J, Lu H, Chen P, Zhang R and Zheng Y D 2013 Chin. Phys. Lett. 30 068501
|
[4] |
Miller D, Chemla D, Damen T, Gossard A, Wiegmann W, Wood T and Burrus C 1984 Phys. Rev. Lett. 53 2173
|
[5] |
Ryou J H, Yoder P D, Liu J P, Lochner Z, Kim H, Choi S, Kim H J and Dupuis R D 2009 IEEE J. Sel. Top. Quantum Electron. 15 1080
|
[6] |
Zhang B and Liu Y 2014 Chin. Sci. Bull. 59 1251
|
[7] |
Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L and Jiang F Y 2013 Chin. Phys. Lett. 30 098101
|
[8] |
Zheng Z, Chen Z, Xian Y, Fan B, Huang S, Jia W, Wu Z, Wang G and Jiang H 2012 Jpn. J. Appl. Phys. 51 072101
|
[9] |
Jang C H, Sheu J K, Tsai C M, Chang S J, Lai W C, Lee M L, Ko T K, Shen C F and Shei S C 2010 IEEE J. Quantum Electron. 46 513
|
[10] |
Leem S J, Shin Y C, Kim K C, Kim E H, Sung Y M, Moon Y, Hwang S M and Kim T G 2008 J. Cryst. Growth 311 103
|
[11] |
Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J and Walker D 2002 IEEE Electron Dev. Lett. 23 535
|
[12] |
Chen C H, Su Y K, Chang S J, Chi G C, Sheu J K, Chen J F, Liu C H and Liaw Y H 2002 IEEE Electron Dev. Lett. 23 130
|
[13] |
Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H and Dupuis R D 2013 Appl. Phys. Lett. 102 041115
|
[14] |
Lu C, Wang L, Lu J, Li R, Liu L, Li D, Liu N, Li L, Cao W, Yang W, Chen W, Du W, Lee C T and Hu X 2013 J. Appl. Phys. 113 013102
|
[15] |
Nanhui N, Huaibing W, Jianping L, Naixin L, Yanhui X, Jun H, Jun D and Guangdi S 2006 J. Cryst. Growth 286 209
|
[16] |
Nanhui N, Huaibing W, Jianping L, Naixin L, Yanhui X, Jun H, Jun D and Guangdi S 2007 Solid-State Electron. 51 860
|
[17] |
Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 58502
|
[18] |
Chen H S, Lu C F, Yeh D M, Huang C F, Huang J J and Yang C C 2006 IEEE Photon. Technol. Lett. 18 2269
|
[19] |
Srinivasan S, Liu R, Bertram F, Ponce F A, Tanaka S, Omiya H and Nakagawa Y 2001 Phys. Status Solidi B 228 41
|
[20] |
Wu M F, Zhou S, Yao S, Zhao Q, Vantomme A, Van Daele B, Piscopiello E, Van Tendeloo G, Tong Y Z, Yang Z J, Yu T J and Zhang G Y 2004 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 22 920
|
[21] |
Davydov V Y, Averkiev N S, Goncharuk I N, Nelson D K, Nikitina I P, Polkovnikov A S, Smirnov A N, Jacobson M A and Semchinova O K 1997 J. Appl. Phys. 82 5097
|
[22] |
Pereira S, Correia M, Pereira E, O'Donnell K, Trager-Cowan C, Sweeney F and Alves E 2001 Phys. Rev. B 64 205311
|
[23] |
Hao M, Ishikawa H, Egawa T, Shao C L and Jimbo T 2003 Appl. Phys. Lett. 82 4702
|
[24] |
Müller M, Smith G D W, Gault B and Grovenor C R M 2012 Acta Mater. 60 4277
|
[25] |
Billeb A, Grieshaber W, Stocker D, Schubert E F and Karlicek R F 1997 Appl. Phys. Lett. 70 2790
|
[26] |
Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692
|
[27] |
Shiojiri M, Chuo C C, Hsu J T, Yang J R and Saijo H 2006 J. Appl. Phys. 99 073505
|
[28] |
Lu L, Zhu Y H, Chen Z T and Egawa T 2011 J. Appl. Phys. 109 113537
|
[29] |
McCluskey M D, Romano L T, Krusor B S, Bour D P, Johnson N M and Brennan S 1998 Appl. Phys. Lett. 72 1730
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|