Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064208    DOI: 10.1088/1674-1056/24/6/064208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High coupling efficiency and low signal light loss (2+1)× 1 coupler

Chen Xiao (陈霄)a, Xiao Qi-Rong (肖起榕)b, Jin Guang-Yong (金光勇)a, Yan Ping (闫平)b, Gong Ma-Li (巩马理)b
a Province Key Laboratory of Solid Laser Technology and Application, College of Science,Changchun University of Science and Technology, Changchun 130022, China;
b Center for Photonics and Electronics, State Key Laboratory of Tribology, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Abstract  The coupling efficiency of the pump coupler determines the pump light injection capacity of a laser system. Experimental analysis of the influences of different factors on the pump coupling efficiency is in accordance with this conclusion. We use two Nufern fibers (400 μm/440 μm with NA = 0.22) as pump arm, one Nufern fiber (20 μm/400 μm with NA = 0.06/0.46) as a main fiber to make a side-pumping (2+1)× 1 coupler. The experimental result shows that the total output power of this (2+1)× 1 coupler is about 1160 W, corresponding to a coupling efficiency as high as 98.6%. The loss of signal light is less than 1%.
Keywords:  fiber lasers      diode-pumped lasers      couplers  
Received:  10 September 2014      Revised:  24 November 2014      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61307057) and the Fund from the State Key Laboratory of Tribology, Tsinghua University (Grant No. SKLT12B08).
Corresponding Authors:  Gong Ma-Li     E-mail:  gongml@mail.tsinghua.edu.cn
About author:  42.55.Wd; 42.55.Xi; 42.81.Qb

Cite this article: 

Chen Xiao (陈霄), Xiao Qi-Rong (肖起榕), Jin Guang-Yong (金光勇), Yan Ping (闫平), Gong Ma-Li (巩马理) High coupling efficiency and low signal light loss (2+1)× 1 coupler 2015 Chin. Phys. B 24 064208

[1] Anikitchev S G, Lindsay K E and Starodoumov A 2007 U.S. Patent 7272956
[2] Weber Th, Lüthy W and Weber H P 1996 Appl. Phys. B: Lasers and Optics 63 131
[3] Ripin D J and Goldberg L 1995 Electron. Lett. 31 2204
[4] Temyanko V, Mansuripur M and Peyghambarian N 2004 Photon. Technol. Lett. 16 2024
[5] Moore S W, Koplow J P, Hansen A, Wien G and Kliner D A 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), Optical Society of America, paper CThL2
[6] Xiao Q R, Yan P, Yin S, Hao J and Gong M L 2011 Laser Phys. Lett. 8 125
[7] Huang C, Huang D, Chang C, Jheng D, Hsu K, Kuan C and Huang S 2011 in CLEO: 2011-Laser Applications to Photonic Applications, OSA Technical Digest (CD), Optical Society of America, paper JWA41
[8] Cesar J, Steffen B, Georgios W, Jens L and Andreas T J 2011 Opt. Soc. Am. B 27 1011
[9] Gonthier F 2010 Proc. SPIE 7580 758019
[10] Grudinin A B, Payne D N, Turner P W, A Nilsson L J, Zervas M N, Ibsen M and Durkin M K 2014 U.S. Patent 6826335
[11] Thomas T, Hakan S, Jörg N, Ludger O and Dietmar K 2012 Opt. Express 20 28125
[12] Thoms T, Hakan S, Jörg N and Dietmar K 2012 IEEE Photon. Technol. Lett. 24 1864
[13] Gapontsev V P and Samartsev I 1999 U.S. Patent 5999673
[14] Sintov Y, Glick Y, Koplowitch T, Katz O, Nafcha Y, Shamir Y and Lavi R 2007 Proc. SPIE 6552 65520R
[15] Glick Y, Sintov Y, Koplowitch T and Nafcha Y 2007 in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), Optical Society of America, paper CFI4
[16] Gonthier F, Garneau M and Vachon N 2011 US Patent 7933779 B2
[17] Xiao Q R, Yan P, Wang Y P, Hao J P and Gong M L 2011 Appl. Opt. 50 1164
[18] Dan N, Jongchul P, Mitchell W, Jonathan S and Victor I 2013 Kopp. Proc. SPIE 8601, Fiber Lasers X: Technology, Systems and Applications, 860139
[19] Andrea B, Massimo O, Alessandra N and Guido P 2011 Proc SPIE 7914, Fiber Lasers VIII: Technology, Systems and Applications, 79142V
[20] Theeg T, Sayinc H, Neumann J, Overmeyer L and Kracht D 2013 in 2013 Conference on Lasers and Electro-Optics–International Quantum Electronics Conference, paper CJ.1.2
[1] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[2] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[3] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[4] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[5] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[6] Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Mei-Song Liao(廖梅松), Xia Li(李夏), Pei-Wen Guan(关珮雯), Yin-Yao Liu(刘银垚), Yan Zhou(周延), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(3): 034203.
[7] Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Xiao-Yan Zhang(张晓艳), Jin-Tian Lin(林锦添), Xia Li(李夏), Pei-Wen Kuan(关珮雯), Yan Zhou(周延), Mei-Song Liao(廖梅松), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(1): 014207.
[8] MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm
Cong Wang(王聪), Qian-Qian Peng(彭倩倩), Xiu-Wei Fan(范秀伟), Wei-Yuan Liang(梁维源), Feng Zhang(张峰), Jie Liu(刘杰), Han Zhang(张晗). Chin. Phys. B, 2018, 27(9): 094214.
[9] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
[10] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[11] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[12] Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm
Jintao Wang(王金涛), Jinde Yin(尹金德), Tingchao He(贺廷超), Peiguang Yan(闫培光). Chin. Phys. B, 2018, 27(8): 084214.
[13] Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰). Chin. Phys. B, 2018, 27(8): 084215.
[14] Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser
Rui-dong Lv(吕瑞东), Lu Li(李璐), Yong-gang Wang(王勇刚), Zhen-dong Chen(陈振东), Si-cong Liu(刘思聪), Xi Wang(王茜), Jiang Wang(王江), Yong-fang Li(李永放). Chin. Phys. B, 2018, 27(11): 114214.
[15] Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm
Bin Liu(刘斌), Li-He Zheng(郑丽和), Qing-Guo Wang(王庆国), Jun-Fang Liu(刘军芳), Liang-Bi Su(苏良碧), Hui-Li Tang(唐慧丽), Jie Liu(刘杰), Xiu-Wei Fan(范秀伟), Feng Wu(吴锋), Ping Luo(罗平), Heng-Yu Zhao(赵衡煜), Jiao-Jiao Shi(施佼佼), Nuo-Tian He(何诺天), Na Li(李纳), Qiu Li(李秋), Chao Guo(郭超), Xiao-Dong Xu(徐晓东), Zhan-Shan Wang(王占山), Jun Xu(徐军). Chin. Phys. B, 2017, 26(8): 084203.
No Suggested Reading articles found!