Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm |
Cong Wang(王聪)1, Qian-Qian Peng(彭倩倩)1, Xiu-Wei Fan(范秀伟)1, Wei-Yuan Liang(梁维源)2, Feng Zhang(张峰)2, Jie Liu(刘杰)1,3, Han Zhang(张晗)2 |
1 Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen 518060, China;
3 Institute of Data Science and Technology, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The excellent optical properties of MXene provide new opportunities for short-pulse lasers. A diode-pumped passively Q-switched laser at 1.3 μm wavelength with MXene Ti3C2Tx as saturable absorber was achieved for the first time. The stable passively Q-switched laser has 454 ns pulse width and 162 kHz repetition rate at 4.5 W incident pumped power. The experimental results show that the MXene Ti3C2Tx saturable absorber can be used as an optical modulator to generate short pulse lasers in a solid-state laser field.
|
Received: 29 April 2018
Revised: 03 July 2018
Accepted manuscript online:
|
PACS:
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.60.Gd
|
(Q-switching)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475089 and 61435010), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2016B050501005), and the Science and Technology Innovation Commission of Shenzhen, China (Grant No. KQTD2015032416270385). |
Corresponding Authors:
Xiu-Wei Fan, Jie Liu
E-mail: xwfan@sdnu.edu.cn;jieliu@sdnu.edu.cn
|
Cite this article:
Cong Wang(王聪), Qian-Qian Peng(彭倩倩), Xiu-Wei Fan(范秀伟), Wei-Yuan Liang(梁维源), Feng Zhang(张峰), Jie Liu(刘杰), Han Zhang(张晗) MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm 2018 Chin. Phys. B 27 094214
|
[1] |
Ma J, Lu S B, Guo Z N, Xu X D, Zhang H, Tang D Y and Fan D Y 2015 Opt. Express 23 22643
|
[2] |
Liu J J, Liu J, Guo Z N, Zhang H, Ma W W, Wang J Y and Su L B 2016 Opt. Express 24 30289
|
[3] |
Xu B, Wang Y, Cheng Y J, Yang H, Xu H Y and Cai Z P 2015 J. Opt. 17 15501
|
[4] |
Zhu H T, Zhao L N, Liu J, Xu S C, Cai W, Jiang S Z, Zheng L H, Su L B and Xu J 2016 Opt. Eng. 55 081304
|
[5] |
Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205
|
[6] |
Xu B, Wang Y, Peng J, Luo Z Q, Xu H Y, Cai Z P and Weng J 2015 Opt. Express 23 7674
|
[7] |
Wang K, Yang K J, Zhang X Y, Zhao S Z, Luan C, Liu C, Wang J, Xu X D and Xu J 2017 IEEE J. Sel. Top. Quant. 23 71
|
[8] |
Wang X, Li L, Li J P and Wang Y G 2017 Chin. Phys. B 26 044203
|
[9] |
Zhang C, Liu J, Fan X W, Peng Q Q, Guo X S, Jiang D P, Qian X B and Su L B 2018 Opt. Laser Technol. 103 89
|
[10] |
Sun X L, Nie H K, He J L, Zhao R W, Su X C, Wang Y R, Zhang B T, Wang R H and Yang K J 2018 IEEE J. Sel. Top. Quantum Electron. 24 1
|
[11] |
Hui L J, Rong T J, Ting H M, Qin X R, Yuan D Z, Hua Y Z and Rong S Y 2015 Chin. Phys. B 24 024215
|
[12] |
Chu Z Z, Zhang H N, Wu Y J and Liu J 2018 Opt. Commun. 406 209
|
[13] |
Xu B, Cheng Y J, Wang Y, Huang Y Z, Peng J, Luo Z Q, Xu H Y, Cai Z P, Weng J and Moncorgé R 2014 Opt. Express 22 28934
|
[14] |
Zhu H T, Cai W, Wei J F, Liu J, Zheng L H, Su L B, Xu J and Wang Y G 2015 Opt. Laser Technol. 68 120
|
[15] |
Wang X F, Peng X L, Jiang Q X, Gu X H, Zhang J H, Mao X F and Yuan S Z 2017 Chin. Phys. B 26 114205
|
[16] |
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248
|
[17] |
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322
|
[18] |
Barsoum M W and El-Raghy T 2001 Am. Sci. 89 334
|
[19] |
Mashtalir O, Naguib M, Mochalin V N, Agnese D Y, Heon M, Barsoum M W and Gogotsi Y 2013 Nat. Commun. 4 1716
|
[20] |
Lukatskaya M R, Mashtalir O, Ren C E, Agnese D Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Science 341 1502
|
[21] |
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M and Gogotsi Y 2016 Science 353 1137
|
[22] |
Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R and Tian Y 2014 J. Am. Chem. Soc. 136 4113
|
[23] |
Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J S, Barsoum M W and Gogotsi Y 2014 Proc. Natl. Acad. Sci. USA 111 16676
|
[24] |
Chen J, Chen K, Tong D, Huang Y, Zhang J, Xue J, Huang Q and Chen T 2015 Chem. Commun. 51 314
|
[25] |
Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T and Geng Angew F 2016 Chem. Int. Ed. 55 14569
|
[26] |
Hantanasirisakul K, Zhao M Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W and Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050
|
[27] |
Zhang X, Zhang Z and Zhou Z 2018 J. Energy Chem. 27 73
|
[28] |
Lei J C, Zhang X and Zhou Z 2015 Front. Phys. 10 276
|
[29] |
Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
|
[30] |
Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, Feng Y, Zhang X, Benxue J, Zhao Q, Zhang H, Coleman J N, Zhang L and Blau W J 2013 ACS Nano 7 9260
|
[31] |
Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183
|
[32] |
Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
|
[33] |
Ran J, Gao G, Li F T, Ma T Y, Du A and Qiao S Z 2017 Nat. Commun. 8 13907
|
[34] |
Shi C, Beidaghi M, Naguib M, Mashtalir O, Gogotsi Y and Billinge S J L 2014 Phys. Rev. Lett. 112 125501
|
[35] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
|
[36] |
Anasori B, Lukatskaya M R and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098
|
[37] |
Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W and Gogotsi Y 2016 Nanoscale Horiz. 1 227
|
[38] |
Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y and Jhon Y M 2017 Adv. Mater. 29 1702496
|
[39] |
Lu J, Zou X, Li C, Li W K, Liu Z Z, Liu Y Q and Leng Y X 2017 Chin. Opt. Lett. 15 041401
|
[40] |
Spühler G J, Paschotta R, Fluck R, Braun B, Moser M, Zhang G, Gini E and Keller U J 1999 Opt. Soc. Am. B 16 376
|
[41] |
Zayhowski J J and Kelley P L 1991 IEEE J. Quantum Electron. 27 2220
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|