ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm |
Bin Liu(刘斌)1, Li-He Zheng(郑丽和)2, Qing-Guo Wang(王庆国)1,3, Jun-Fang Liu(刘军芳)4, Liang-Bi Su(苏良碧)2, Hui-Li Tang(唐慧丽)1,3, Jie Liu(刘杰)5, Xiu-Wei Fan(范秀伟)5, Feng Wu(吴锋)1,3, Ping Luo(罗平)1,3, Heng-Yu Zhao(赵衡煜)1, Jiao-Jiao Shi(施佼佼)1, Nuo-Tian He(何诺天)1, Na Li(李纳)1, Qiu Li(李秋)1, Chao Guo(郭超)1, Xiao-Dong Xu(徐晓东)6, Zhan-Shan Wang(王占山)1, Jun Xu(徐军)1,3 |
1 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 Key Laboratory of Transparent and Opto-Functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Shanghai Engineering Research Center for Sapphire Crystals, Shanghai 201899, China;
4 School of Materials Science and Engineering, Tongji University, Shanghai 200092, China;
5 College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
6 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China |
|
|
Abstract The 4-at.% Tm:Sc2SiO5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave (CW) laser output of (100)-cut Tm:SSO with the dimensions of 3 mm×3 mm×3 mm under laser diode (LD)-pumping is realized. The full width at half maximum (FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW.
|
Received: 07 September 2016
Revised: 17 April 2017
Accepted manuscript online:
|
PACS:
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.70.Hj
|
(Laser materials)
|
|
81.10.Fq
|
(Growth from melts; zone melting and refining)
|
|
Fund: Project supported by the Shanghai Municipal Engineering Research Center for Sapphire Crystals, China (Grant No. 14DZ2252500), the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (Grant No. 2008DP17301), the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China and the China Academy of Engineering Physics Joint Fund (Grant No. U1530152), the National Natural Science Foundation of China (Grant Nos. 61475177 and 61621001), the Shanghai Municipal Natural Science Foundation, China (Grant No. 13ZR1446100), and the MDE Key Laboratory of Advanced Micro-Structured Materials. |
Corresponding Authors:
Qing-Guo Wang, Jun Xu
E-mail: wqingguo2013@163.com;xujun@mail.shcnc.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Bin Liu(刘斌), Li-He Zheng(郑丽和), Qing-Guo Wang(王庆国), Jun-Fang Liu(刘军芳), Liang-Bi Su(苏良碧), Hui-Li Tang(唐慧丽), Jie Liu(刘杰), Xiu-Wei Fan(范秀伟), Feng Wu(吴锋), Ping Luo(罗平), Heng-Yu Zhao(赵衡煜), Jiao-Jiao Shi(施佼佼), Nuo-Tian He(何诺天), Na Li(李纳), Qiu Li(李秋), Chao Guo(郭超), Xiao-Dong Xu(徐晓东), Zhan-Shan Wang(王占山), Jun Xu(徐军) Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm 2017 Chin. Phys. B 26 084203
|
[1] |
Johnson L F, Boyd G D, Nassau K and Soden R R 1961 Phys. Rev. 126 1406
|
[2] |
Johnson L F, Geusic J E and Van Uitert L G 1965 Appl. Phys. Lett. 7 127
|
[3] |
Stoneman R C and Esterowitz L 1990 Opt. Lett. 15 486
|
[4] |
Wyss C P, Luthy W, Weber H P, Vlasov V I, Zavartsev Y D, Studenikin P A, Zagumennyui A I and Shcherbakov I A 1998 IEEE J. Quantum Electron. 34 2380
|
[5] |
Coluccelli N, Galzerano G, Cornacchia F, Lieto A D, Tonelli M and Laporta P 2009 Opt. Lett. 34 3559
|
[6] |
Braud A, Tigreat P Y, Doualan J L and Moncorgé R 2001 Appl. Phys. B 72 909
|
[7] |
Camy P, Doualan J L, Renard S, Braud A, Ménard V and Moncorgé R 2004 Opt. Commun. 236 395
|
[8] |
Cheng X J, Zhang S Y, Xu J Q, Peng H Y and Hang Y 2009 Opt. Express 17 14895
|
[9] |
Galzerano G, Cornacchia F, Parisi D, Toncelli A, Tonelli M and Laporta P 2005 Opt. Lett. 30 854
|
[10] |
Cornacchia F, Parisi D, Sani E, Toncelli A and Tonelli M 2005 Advanced Solid-State Photonics, Denman C and Sorokina I (eds.), OSA TOPS, Vol. 98 (OSA, Washington, DC), pp. 219-223
|
[11] |
Zhu G L 2015 Chin. Phys. Lett. 32 094207
|
[12] |
Yao B Q, Zheng L L, Duan X M, Wang Y Z, Zhao G J and Dong Q 2008 Laser Phys. Lett. 5 714
|
[13] |
Gaponenko M S, Kisel V E, Kuleshov N V, Malyarevich A M, Yumashev K V and Onushchenko A A 2010 Laser Phys. Lett. 7 286
|
[14] |
Zheng L H, Xu J, Su L B, Li H J, Ryba-Romanowski W, Lisiecki R and Solarz P 2010 Appl. Phys. Lett. 96 121908
|
[15] |
Gaume R, Viana B, Derouet J and Vivien D 2003 Opt. Mater. 22 107
|
[16] |
Tan W D, Tang D Y, Xu X D, Zhang J, Xu C W, Wu F, Zheng L H, Su L B and Xu J 2010 Opt. Express 18 16739
|
[17] |
Zheng L H, Xu J, Zhao G J, Su L B, Wu F and Liang X Y 2008 Appl. Phys. B 91 443
|
[18] |
Su L M, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Laser Phys. Lett. 2 120
|
[19] |
Liu C C, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Opt. Commun. 285 1352
|
[20] |
Yang X T, Liu L and Xie W Q 2017 Chin. Phys. Lett. 34 024201
|
[21] |
Zheng L H, Xu J, Su L B, Li H J, Wang Q G, Ryba-Romanowski W, Lisiecki R and Wu F 2009 Opt. Lett. 34 3481
|
[22] |
Yang K J, Zhao S Z, Zhang G, Cheng K, Li G Q, Li D C, Xu J L, He J L, Zheng L H, Wu F, Wang Q G, Su L B and Xu J 2012 Laser Phys. Lett. 9 10
|
[23] |
Fornasiero L, Petermann K, Heumann E and Huber C 1998 Opt. Mater. 10 9
|
[24] |
Campos S, Denoyer A, Jandl S, Viana B, Vivien D, Loiseau P and Ferrand B 2004 J. Phys.: Condens. Matter 16 4579
|
[25] |
Zavartsev Yu D, Zagumennyi A I, Kalachev Yu L, Kutovoi S A, Mikhailov V A, Podreshetnikov V V and Scherbakov I A 2011 IEEE J. Quantum Electron. 41 420
|
[26] |
Fan X W, Liu J, Zheng L H, Su L B and Xu J 2013 Opt. Laser Technol. 50 51
|
[27] |
Liu J, Li Y Q, Zheng L H, Su L B, Xu J and Wang Y G 2013 Laser Phys. Lett. 10 105812
|
[28] |
Cao D, Peng Q, Du S, Xu J, Guo Y, Yang J and Xu Z 2011 Appl. Phys. B: Lasers and Optics 103 83
|
[29] |
Vatnik S, Vedin I, Segura M, Mateos X, Pujol M C, Carvajal J J and Griebner U 2012 Opt. Lett. 37 356
|
[30] |
Urata Y and Wada S 2005 Appl. Opt. 44 3087
|
[31] |
Zhang Z, Ruan N J, Zhou F and Liu Z J 2011 Laser Phys. 21 459
|
[32] |
Di Trapani F, Mateos X, Petrov V, Agnesi A, Griebner U, Zhang H and Yu H 2014 Laser Phys. 24 035806
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|