Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm |
Jintao Wang(王金涛)1,2, Jinde Yin(尹金德)1,2, Tingchao He(贺廷超)3, Peiguang Yan(闫培光)1 |
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
3 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract Ultrafast pulse generation was demonstrated in thulium doped fiber laser mode locked by magnetron sputtering deposited Sb2Te3 with the modulation depth, non-saturable loss, and saturable intensity of 38%, 31.2%, and 3.3 MW/cm2, respectively. Stable soliton pulses emitting at 1930.07 nm were obtained with pulse duration of 1.24 ps, a 3-dB spectral bandwidth of 3.87 nm, an average output power of 130 mW, and signal-to-noise ratio (SNR) of 84 dB. To our knowledge, this is the first demonstration of Sb2Te3-based SA in fiber lasers at 2-μm regime.
|
Received: 11 April 2018
Revised: 07 May 2018
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775146, 11704260, 61405126, and 61605122), the Shenzhen Science and Technology Project (Grant Nos. JCYJ20160427105041864, JSGG20160429114438287, KQJSCX20160226194031, JCYJ20160422103744090, and JCY20150324141711695), and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030310049, 2016A030310059, and 2017A030310402). |
Corresponding Authors:
Peiguang Yan
E-mail: yanpg@szu.edu.cn
|
Cite this article:
Jintao Wang(王金涛), Jinde Yin(尹金德), Tingchao He(贺廷超), Peiguang Yan(闫培光) Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm 2018 Chin. Phys. B 27 084214
|
[1] |
Woodward R and Kelleher E 2015 Appl. Sci. 5 1440
|
[2] |
Wang P, Shi H, Tan F and Wang P 2017 Opt. Express 25 16643
|
[3] |
Wu K, Wong J H, Shum P, Lim D R C S, Wong V K H, Lee K E K, Chen J and Obraztsova E D 2010 Opt. Lett. 35 1085
|
[4] |
Wang J, Liang X, Hu G, Zheng Z, Lin S, Ouyang D, Wu X, Yan P, Ruan S and Sun Z 2016 Sci. Rep. 6 28885
|
[5] |
Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
|
[6] |
Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L, Yu H, Zhang H, Wang J and Tang D 2012 Opt. Lett. 37 2085
|
[7] |
Li J, Luo H, Wang L, Zhao C, Zhang H, Li H and Liu Y 2015 Opt. Lett. 40 3659
|
[8] |
Luo Z Q, Li Y Y, Zhong M, Huang Y Z, Wan X J, Peng J and Weng J 2015 Photon. Res. 3 A79
|
[9] |
Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C and Zhang H 2015 Opt. Express 23 20030
|
[10] |
Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
|
[11] |
Zhang M, Richard C, Howe T, Woodward R I, Edmund J, Kelleher R, Torrisi F, Hu G, Popov S V and Taylor J R 2015 Nano Res. 8 1522
|
[12] |
Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H and Zhao J 2016 Small 12 1489
|
[13] |
Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 Acs Nano 4 803
|
[14] |
Bao Q L, Zhang H, Ni Z H, Wang Y, Polavarapu L, Shen Z X, Xu Q H, Tang D Y and Loh K P 2011 Nano Res. 4 297
|
[15] |
Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J and Wang J Y 2013 Laser Photon. Rev. 7 L77
|
[16] |
Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B and Xu J 2012 Laser Phys. Lett. 9 15
|
[17] |
Yan P, Chen H, Liu A, Li K, Ruan S, Ding J, Qiu X and Guo T 2017 IEEE J. Sel. Top. Quantum Electron. 23 33
|
[18] |
Yin J, Li J, Chen H, Wang J, Yan P, Liu M, Liu W, Lu W, Xu Z and Zhang W 2017 Opt. Express 25 30020
|
[19] |
Wang J T, Lu W, Li J R, Chen H, Jiang Z K, Wang J Z, Zhang W F, Zhang M, Li I L, Xu Z H, Liu W J and Yan P G 2018 IEEE J. Sel. Top. Quantum Electron. 24 1100706
|
[20] |
Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P and Ruan S 2017 Opt. Lett. 42 5010
|
[21] |
Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K and Yeom D I 2016 Opt. Express 24 14152
|
[22] |
Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
|
[23] |
Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P and Ruan S 2018 Opt. Lett. 43 1998
|
[24] |
Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P and Ruan S 2018 Photon. Res. 6 535
|
[25] |
Liu M, Zhao N, Liu H, Zheng X W, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H and Wen S C 2014 IEEE Photon. Technol. Lett. 26 983
|
[26] |
Wang Z T, Chen Y, Zhao C J, Zhang H and Wen S C 2012 IEEE Photon. J. 4 869
|
[27] |
Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H and Tang D 2016 Opt. Express 24 25933
|
[28] |
Guo B, Yao Y, Yang Y F, Yuan Y J, Jin L, Yan B and Zhang J Y 2015 Photon. Res. 3 94
|
[29] |
Guo B, Yao Y, Xiao J J, Wang R L and Zhang J Y 2016 IEEE J. Sel. Top. Quantum Electron. 22 8
|
[30] |
Guo B, Lyu Q, Yao Y and Wang P 2016 Opt. Mater. Express 6 2475
|
[31] |
Liu W, Pang L, Han H, Tian W, Chen H, Lei M, Yan P and Wei Z 2015 Opt. Express 23 26023
|
[32] |
Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S and Lee J H 2014 Opt. Express 22 7865
|
[33] |
Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W and Chen J 2018 Opt. Commun. 406 214
|
[34] |
Xia H, Li H, Lan C, Li C, Zhang X, Zhang S and Liu Y 2014 Opt. Express 22 17341
|
[35] |
Fan P, Zheng Z H, Liang G X, Cai X M and Zhang D P 2010 Chin. Phys. Lett. 27 087201
|
[36] |
Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryl and E W 1990 IEEE J. Quantum Electron. 26 760
|
[37] |
Moreels I, Hens Z, Kockaert P, Loicq J and Van Thourhout D 2006 Appl. Phys. Lett. 89 193106
|
[38] |
Liu Z, Wang Y, Zhang X, Xu Y, Chen Y and Tian J 2009 Appl. Phys. Lett. 94 021902
|
[39] |
Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y, Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q, Fan D and Zhang H 2018 Laser Photon. Rev. 12 1700229
|
[40] |
Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, Feng Y, Zhang X, Jiang B, Zhao Q, Zhang H, Coleman J N, Zhang L and Blau W J 2013 ACS Nano 7 9260
|
[41] |
Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183
|
[42] |
Wei R, Zhang H, He X, Hu Z, Tian X, Xiao Q, Chen Z and Qiu J 2015 Opt. Mater. Express 5 1807
|
[43] |
Chen H, Yin J, Yang J, Zhang X, Liu M, Jiang Z, Wang J, Sun Z, Guo T, Liu W and Yan P 2017 Opt. Lett. 42 4279
|
[44] |
Yan P, Chen H, Yin J, Xu Z, Li J, Jiang Z, Zhang W, Wang J, Li I L and Sun Z 2017 Nanoscale 9 1871
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|