ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optomechanical-organized multipulse dynamics in ultrafast fiber laser |
Lin Huang(黄琳)1,2,3,†, Yu-Sheng Zhang(张裕生)4, and Yu-Dong Cui(崔玉栋)5 |
1 Ceyear Technologies Co., Ltd, Qingdao 266555, China; 2 Science and Technology on Electronic Test & Measurement Laboratory, Qingdao 266555, China; 3 School of Information Science and Engineering, Shandong University, Qingdao 266237, China; 4 Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China; 5 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract A novel organized multipulse pattern and its birth dynamics under strong optomechanical effect in microfiber-assisted ultrafast fiber laser are investigated in this work. The background pulses are observed to obviously exhibit selectively amplifying self-organized process of evolving into quasi-stable equidistant clusters. The radio frequency spectrum of the multipulse pattern displays a harmonic mode-locking-like behavior with a repetition rate of 2.0138 GHz, corresponding to the frequency of torsional-radial (TR2m) acoustic mode in microfiber. The results show the evidence of optomechanical effect in dominating the birth dynamics and pattern of multipulse.
|
Received: 27 January 2021
Revised: 28 March 2021
Accepted manuscript online: 30 March 2021
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.81.-i
|
(Fiber optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61525505, 11774310, and 62035010) and the Postdoctoral Science Foundation of China (Grant No. 2019M652076). |
Corresponding Authors:
Lin Huang
E-mail: huanglin@ceyear.com
|
Cite this article:
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋) Optomechanical-organized multipulse dynamics in ultrafast fiber laser 2021 Chin. Phys. B 30 114203
|
[1] Ryczkowski P, Närhi M, Billet C, Merolla J M, Genty G and Dudley J M 2018 Nat. Photon. 12 221 [2] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84 [3] Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905 [4] Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P and Grelu P 2019 Nat. Commun. 10 830 [5] He W, Pang M, Yeh D H, Huang J, Menyuk C R and Russell P S J 2019 Nat. Commun. 10 5756 [6] Liu X and Pang M 2019 Laser Photon. Rev. 13 1800333 [7] Wang X, Peng J, Huang K, Yan M and Zeng H 2019 Opt. Express 27 28808 [8] Sulimany K, Lib O, Masri G, Klein A, Fridman M, Grelu P, Gat O and Steinberg H 2018 Phys. Rev. Lett. 121 133902 [9] Chouli S and Grelu P 2010 Phys. Rev. A 81 063829 [10] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356 50 [11] Tang D Y, Zhao B, Zhao L M and Tam H Y 2005 Phys. Rev. E 72 016616 [12] Grudinin A B and Gray S 1997 J. Opt. Soc. Am. B 14 144 [13] Kutz J N, Collings B, Bergman K and Knox W 1998 IEEE J. Quantum Electron. 34 1749 [14] Korobko D A, Okhotnikov O G and Zolotovskii I O 2015 Opt. Lett. 40 2862 [15] Pang M, He W, Jiang X and Russell P S J 2016 Nat. Photon. 10 454 [16] Jang J K, Erkintalo M, Murdoch S G and Coen S 2013 Nat. Photon. 7 657 [17] Weill R, Bekker A, Smulakovsky V, Fischer B and Gat O 2016 Optica 3 189 [18] Pilipetskii A N, Golovchenko E A and Menyuk C R 1995 Opt. Lett. 20 907 [19] Wang Z, Wang Z, Liu Y, He R, Zhao J, Wang G and Yang G 2018 Opt. Lett. 43 478 [20] Pang M, Jiang X, He W, Wong G K L, Onishchukov G, Joly N Y, Ahmed G, Menyuk C R and Russell P S J 2015 Optica 2 339 [21] Kang M S, Brenn A, Wiederhecker G S and Russell P S J 2008 Appl. Phys. Lett. 93 131110 [22] Kang M S, Nazarkin A, Brenn A and Russell P S J 2009 Nat. Phys. 5 276 [23] He W, Pang M, Yeh D H, Huang J and Russell P S J 2021 Light Sci. Appl. 10 1 [24] Shelby R M, Levenson M D and Bayer P W 1985 Phys. Rev. B 31 5244 [25] Jarschel P F, Magalhaes L S, Aldaya I, Florez O and Dainese P 2018 Opt. Lett. 43 995 [26] Lee K S, Ha C K, Moon K J, Han D S and Kang M S 2019 Commun. Phys. 2 141 [27] Kbashi H J, Sergeyev S V, Al-Araimi M, Rozhin A, Korobko D and Fotiadi A 2019 Opt. Lett. 44 5112 [28] Huang L, Zhang Y, Cui Y, Qiu J and Liu X 2020 Opt. Lett. 45 4678 [29] Zhang R L, Wang J, Liao M S, Li X, Guan P W, Liu Y Y, Zhou Y, Gao W Q 2019 Chin. Phys. B 28 034203 [30] Zhang R L, Wang J, Zhang X Y, Lin J T, Li X, Kuan P W, Zhou Y, Liao M S and Gao W Q 2019 Chin. Phys. B 28 014201 [31] Cao M, Li H, Tang M, Mi Y, Huang L and Ren G 2019 J. Opt. Soc. Am. B 36 2079 [32] Svelto O and Hanna D C 2010 Principles of lasers, 5th edn. (New York: Springer) pp. 313-319 [33] Liu X and Cui Y 2019 Adv. Photon. 1 016003 [34] Liu X, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901 [35] Dianov E M, Luchnikov A V, Pilipetskii A N and Prokhorov A M 1992 Appl. Phys. B 54 175 [36] Yeh D H, He W, Pang M, Jiang X, Wong G and Russell P S J 2019 Opt. Lett. 44 1580 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|