ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers |
Jinmei Yao(姚金妹)1, Bin Zhang(张斌)1,2,3, Ke Yin(殷科)4, Jing Hou(侯静)1,2,3 |
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China;
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China;
4 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA, Beijing 100010, China |
|
|
Abstract Fiber-based mid-infrared (MIR) supercontinuum (SC) sources benefit from their spectral brightness and spatial coherence that are needed for many applications, such as spectroscopy and metrology. In this paper, an SC spanning from 2 μm to 6 μm is demonstrated in cascaded ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) and As2Se3 step-index fibers. The pump source is a ZBLAN fiber-based MIR SC laser with abundant high-peak-power soliton pulses between 3000 nm and 4200 nm. By concatenating the ZBLAN fiber and the As2Se3 fiber, efficient cascading red-shifts are obtained in the normal dispersion region of the As2Se3 fiber. The spectral behavior of cascaded SC generation shows that the long-wavelength proportion of MIR SC generated in the ZBLAN fiber plays a critical role for further spectral extension in the As2Se3 fiber.
|
Received: 31 March 2019
Revised: 08 May 2019
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.81.-i
|
(Fiber optics)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61435009, 61235008, and 61405254), the Fund from China Scholarship Council (Grant No. 201803170210), and Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2018B008). |
Corresponding Authors:
Bin Zhang, Jing Hou
E-mail: nudtzhb@163.com;houjing25@sina.com
|
Cite this article:
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静) The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers 2019 Chin. Phys. B 28 084209
|
[1] |
Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N and Bang O 2018 Proc. SPIE 10489 Optical Biopsy XVI: Toward Real-Time Spectroscopic Imaging and Diagnosis, February 19, 2018, San Francisco, USA, p. 1048905
|
[2] |
Cossel K C, Waxman E M, Finneran I A, Blake G A, Ye J and Newbury N R 2017 J. Opt. Soc. Am. B 34 104
|
[3] |
Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177
|
[4] |
Swiderski J and Michalska M 2013 Laser Phys. Lett. 10 035105
|
[5] |
Yin K, Zhang B, Yao J, Yang L, Liu G and Hou J 2016 Opt. Lett. 41 5067
|
[6] |
Swiderski J 2014 Prog. Quantum Electron. 38 189
|
[7] |
Yin K, Zhang B, Yang L and Hou J 2017 Opt. Lett. 42 2334
|
[8] |
Zheng Z 2016 Photon. Res. 4 135
|
[9] |
Yang W, Zhang B, Xue G, Yin K and Hou J 2014 Opt. Lett. 39 1849
|
[10] |
Yang L, Zhang B, Jin D, Wu T, He X, Zhao Y and Hou J 2018 Opt. Lett. 43 5206
|
[11] |
Théberge F, Bérubé N, Poulain S, Cozic S, Robichaud L R, Bernier M and Vallée R 2018 Photon. Res. 6 609
|
[12] |
Liang S, Xu L, Fu Q, Jung Y, Shepherd D P, Richardson D J and Alam S U 2018 Opt. Express 26 6490
|
[13] |
Aydin Y O, Fortin V, Vallée R and Bernier M 2018 Opt. Lett. 43 4542
|
[14] |
Thapa R, Rhonehouse D, Nguyen D, Wiersma K, Smith C, Zong J and Chavez-Pirson A 2013 Technologies For Optical Countermeasures X; High-Power Lasers 2013: Technology and Systems, October 15, 2013, Dresden, Germany, p. 889808
|
[15] |
Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y and Qin W 2018 Optica 5 1264
|
[16] |
Shiryaev V S and Churbanov M F 2013 J. Non-Cryst. Solids 377 225
|
[17] |
Asobe M 1997 Opt. Fiber Technol. 3 142
|
[18] |
Ebendorff-Heidepriem H 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, July 06, 2014, Melbourne, Australia, pp. 627-629
|
[19] |
Zhang X Y, Chen F F, Zhang X H and Ji W 2018 Chin. Phys. B 27 084208
|
[20] |
Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S and Wang R 2017 Laser Photon. Rev. 11 1700005
|
[21] |
Zhao Z, Wang X, Dai S, Pan Z, Liu S, Sun L, Zhang P, Liu Z, Nie Q and Shen X 2016 Opt. Lett. 41 5222
|
[22] |
Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z and Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565
|
[23] |
Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T and Ohishi Y 2016 Opt. Lett. 41 2117
|
[24] |
Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N and Tang Z 2014 Nat. Photon. 8 830
|
[25] |
Wang Y, Dai S, Xin H, Zhang P, Liu Y, Wang X and Sun S 2018 Opt. Commun. 410 410
|
[26] |
Irnis K, Christian Rosenberg P, Uffe Visbech M L, Angela S, Trevor B, Laurent B, David M, Moselund P M and Ole B 2014 Opt. Express 22 3959
|
[27] |
Petersen C R, Moselund P M, Petersen C, Moller U and Bang O 2016 Opt. Express 24 749
|
[28] |
Yin K, Zhang B, Yao J, Cai Z, Liu G and Hou J 2017 J. Lightwave Technol. 35 4535
|
[29] |
Yin K, Zhang B, Yao J, Yang L, Chen S and Hou J 2016 Opt. Lett. 41 946
|
[30] |
Brown R N and Hutta J J 1985 Appl. Opt. 24 4500
|
[31] |
Dantanarayana H G, Abdelmoneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A B, Kubat I, Bang O and Benson T M 2014 Opt. Mater. Express 4 1444
|
[32] |
Théberge F, Bérubé N, Poulain S, Cozic S, Châtigny S, Robichaud L R, Pleau L P, Bernier M and Vallée R 2018 Opt. Express 26 13952
|
[33] |
Martinez R A, Plant G, Guo K, Janiszewski B, Freeman M J, Maynard R L, Islam M N, Terry F L, Alvarez O, Chenard F, Bedford R, Gibson R and Ifarraguerri A I 2018 Opt. Lett. 43 296
|
[34] |
Xing S, Kharitonov S, Hu J and Brés C S 2018 Opt. Lett. 43 1443
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|