Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084209    DOI: 10.1088/1674-1056/28/8/084209

The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers

Jinmei Yao(姚金妹)1, Bin Zhang(张斌)1,2,3, Ke Yin(殷科)4, Jing Hou(侯静)1,2,3
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China;
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China;
4 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA, Beijing 100010, China

Fiber-based mid-infrared (MIR) supercontinuum (SC) sources benefit from their spectral brightness and spatial coherence that are needed for many applications, such as spectroscopy and metrology. In this paper, an SC spanning from 2 μm to 6 μm is demonstrated in cascaded ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) and As2Se3 step-index fibers. The pump source is a ZBLAN fiber-based MIR SC laser with abundant high-peak-power soliton pulses between 3000 nm and 4200 nm. By concatenating the ZBLAN fiber and the As2Se3 fiber, efficient cascading red-shifts are obtained in the normal dispersion region of the As2Se3 fiber. The spectral behavior of cascaded SC generation shows that the long-wavelength proportion of MIR SC generated in the ZBLAN fiber plays a critical role for further spectral extension in the As2Se3 fiber.

Keywords:  supercontinuum generation      infrared lasers      fiber lasers      nonlinear  
Received:  31 March 2019      Revised:  08 May 2019      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.81.-i (Fiber optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61435009, 61235008, and 61405254), the Fund from China Scholarship Council (Grant No. 201803170210), and Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2018B008).

Corresponding Authors:  Bin Zhang, Jing Hou     E-mail:;

Cite this article: 

Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静) The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers 2019 Chin. Phys. B 28 084209

[1] Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N and Bang O 2018 Proc. SPIE 10489 Optical Biopsy XVI: Toward Real-Time Spectroscopic Imaging and Diagnosis, February 19, 2018, San Francisco, USA, p. 1048905
[2] Cossel K C, Waxman E M, Finneran I A, Blake G A, Ye J and Newbury N R 2017 J. Opt. Soc. Am. B 34 104
[3] Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177
[4] Swiderski J and Michalska M 2013 Laser Phys. Lett. 10 035105
[5] Yin K, Zhang B, Yao J, Yang L, Liu G and Hou J 2016 Opt. Lett. 41 5067
[6] Swiderski J 2014 Prog. Quantum Electron. 38 189
[7] Yin K, Zhang B, Yang L and Hou J 2017 Opt. Lett. 42 2334
[8] Zheng Z 2016 Photon. Res. 4 135
[9] Yang W, Zhang B, Xue G, Yin K and Hou J 2014 Opt. Lett. 39 1849
[10] Yang L, Zhang B, Jin D, Wu T, He X, Zhao Y and Hou J 2018 Opt. Lett. 43 5206
[11] Théberge F, Bérubé N, Poulain S, Cozic S, Robichaud L R, Bernier M and Vallée R 2018 Photon. Res. 6 609
[12] Liang S, Xu L, Fu Q, Jung Y, Shepherd D P, Richardson D J and Alam S U 2018 Opt. Express 26 6490
[13] Aydin Y O, Fortin V, Vallée R and Bernier M 2018 Opt. Lett. 43 4542
[14] Thapa R, Rhonehouse D, Nguyen D, Wiersma K, Smith C, Zong J and Chavez-Pirson A 2013 Technologies For Optical Countermeasures X; High-Power Lasers 2013: Technology and Systems, October 15, 2013, Dresden, Germany, p. 889808
[15] Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y and Qin W 2018 Optica 5 1264
[16] Shiryaev V S and Churbanov M F 2013 J. Non-Cryst. Solids 377 225
[17] Asobe M 1997 Opt. Fiber Technol. 3 142
[18] Ebendorff-Heidepriem H 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, July 06, 2014, Melbourne, Australia, pp. 627-629
[19] Zhang X Y, Chen F F, Zhang X H and Ji W 2018 Chin. Phys. B 27 084208
[20] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S and Wang R 2017 Laser Photon. Rev. 11 1700005
[21] Zhao Z, Wang X, Dai S, Pan Z, Liu S, Sun L, Zhang P, Liu Z, Nie Q and Shen X 2016 Opt. Lett. 41 5222
[22] Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z and Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565
[23] Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T and Ohishi Y 2016 Opt. Lett. 41 2117
[24] Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N and Tang Z 2014 Nat. Photon. 8 830
[25] Wang Y, Dai S, Xin H, Zhang P, Liu Y, Wang X and Sun S 2018 Opt. Commun. 410 410
[26] Irnis K, Christian Rosenberg P, Uffe Visbech M L, Angela S, Trevor B, Laurent B, David M, Moselund P M and Ole B 2014 Opt. Express 22 3959
[27] Petersen C R, Moselund P M, Petersen C, Moller U and Bang O 2016 Opt. Express 24 749
[28] Yin K, Zhang B, Yao J, Cai Z, Liu G and Hou J 2017 J. Lightwave Technol. 35 4535
[29] Yin K, Zhang B, Yao J, Yang L, Chen S and Hou J 2016 Opt. Lett. 41 946
[30] Brown R N and Hutta J J 1985 Appl. Opt. 24 4500
[31] Dantanarayana H G, Abdelmoneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A B, Kubat I, Bang O and Benson T M 2014 Opt. Mater. Express 4 1444
[32] Théberge F, Bérubé N, Poulain S, Cozic S, Châtigny S, Robichaud L R, Pleau L P, Bernier M and Vallée R 2018 Opt. Express 26 13952
[33] Martinez R A, Plant G, Guo K, Janiszewski B, Freeman M J, Maynard R L, Islam M N, Terry F L, Alvarez O, Chenard F, Bedford R, Gibson R and Ifarraguerri A I 2018 Opt. Lett. 43 296
[34] Xing S, Kharitonov S, Hu J and Brés C S 2018 Opt. Lett. 43 1443
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[9] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[10] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!