Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064209    DOI: 10.1088/1674-1056/24/6/064209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator

Zhang Yan-Yan (张颜艳)a, Yan Lu-Lu (闫露露)a, Zhao Wen-Yu (赵文宇)a b, Meng Sen (孟森)a c, Fan Song-Tao (樊松涛)a b, Zhang Long (张龙)a, Guo Wen-Ge (郭文阁)c, Zhang Shou-Gang (张首刚)a, Jiang Hai-Feng (姜海峰)a
a Key Laboratory of Time and Frequency Standards, National Time Service Center, Xi'an 710600, China;
b University of the Chinese Academy of Sciences, Beijing 100049, China;
c School of Science, Xi'an Shiyou University, Xi'an 710065, China
Abstract  We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro-optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f–2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized carrier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.
Keywords:  optical frequency comb      fiber laser      frequency stabilization      frequency instability  
Received:  13 October 2014      Revised:  26 November 2014      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336101 and 61127901) and West Light Foundation of the Chinese Academy of Sciences (Grant No. 2013ZD02).
Corresponding Authors:  Jiang Hai-Feng     E-mail:  haifeng.jiang@ntsc.ac.cn
About author:  42.55.Wd; 42.62.Eh; 42.65.Re

Cite this article: 

Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰) A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator 2015 Chin. Phys. B 24 064209

[1] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T and Hänsch T W 2000 Phys. Rev. Lett. 84 5102
[2] Holzwarth R, Udem T, Hänsch T W, Knight J C, Wadsworth W J and Russell P S J 2000 Phys. Rev. Lett. 85 2264
[3] Wirth A, Hassan M T, Grguras I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F and Goulielmakis E 2011 Science 334 195
[4] Diddams S A, Hollberg L and Mbele V 2007 Nature 445 627
[5] Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hänsch T W and Manescau A 2007 Mon. Not. R. Astron. Soc. 380 839
[6] Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T and Diddams S A 2011 Nat. Photon. 5 425
[7] Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351
[8] Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I and Newbury N R 2013 Nat. Photon. 7 434
[9] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[10] Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbüldt P, Gäbel K, Poprawe R, Knight J C, Wadsworth W J and Russell P S J 2001 Opt. Lett. 26 1376
[11] Tauser F, Leitenstorfer A and Zinth W 2003 Opt. Express 11 594
[12] Kim K, Washburn B R, Wilpers G, Oates C W, Hollberg L, Newbury N R, Diddams S A, Nicholson J W and Yan M F 2005 Opt. Lett. 30 932
[13] Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M and Keller U 2010 Appl. Phys. B 99 401
[14] Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevičius A, Fermann M E and Ye J 2008 Nat. Photon. 2 355
[15] Nicolodi D, Argence B, Zhang W, Le Targat R, Santarelli G and Le Coq Y 2014 Nat. Photon. 8 219
[16] Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J and Jones D J 2005 Opt. Lett. 30 2948
[17] Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S and Ye J 2007 Opt. Lett. 32 641
[18] Koke S, Grebing C, Frei H, Anderson A, Assion A and Steinmeyer G 2010 Nat. Photon. 4 462
[19] Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersalé Y and Santarelli G 2009 Opt. Lett. 34 3707
[20] Ye J and Cundiff S T 2005 Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Berlin: Springer) p. 16
[21] Zhang L, Han H N, Zhao Y Y, Hou L, Yu Z J and Wei Z Y 2014 Appl. Phys. B 117 1183
[22] Cao S Y, Meng F, Lin B K, Fang Z J and Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese)
[23] Wang G Z, Meng F, Li C, Jiang T X, Wang A M, Fang Z J and Zhang Z G 2014 Opt. Lett. 39 2534
[24] Diddams S A, Hollberg L, Ma L S and Robertsson L 2002 Opt. Lett. 27 58
[25] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[26] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[4] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[5] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[6] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[7] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[8] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[9] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[10] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[11] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[12] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[13] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[14] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[15] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
No Suggested Reading articles found!