Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 113703    DOI: 10.1088/1674-1056/25/11/113703
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks

N Batra1,2, B K Sahoo3, S De1,2
1 Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi, India;
2 CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India;
3 Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
Abstract  

We propose a new ion-trap geometry to carry out accurate measurements of the quadrupole shifts in the 171Yb ion. This trap will minimize the quadrupole shift due to the harmonic component of the confining potential by an order of magnitude. This will be useful to reduce the uncertainties in the clock frequency measurements of the 6s 2S1/2→4f136s2 2F7/2 and 6s 2S1/2→5d 2D3/2 transitions, from which we can deduce the precise values of the quadrupole moments (Θs) of the 4f136s2 2F7/2 and 5d 2D3/2 states. Moreover, it may be able to affirm the validity of the measured Θ value of the 4f136s2 2F7/2 state, for which three independent theoretical studies defer almost by one order of magnitude from the measurement. We also calculate Θs using the relativistic coupled-cluster (RCC) method. We use these Θ values to estimate the quadrupole shift that can be measured in our proposed ion trap experiment.

Keywords:  ion-trap      frequency metrology      atomic clock      systematic uncertainties  
Received:  20 June 2016      Revised:  20 June 2016      Accepted manuscript online: 
PACS:  37.10.Ty (Ion trapping)  
  32.60.+i (Zeeman and Stark effects)  
  31.15.&ndash  
  p  
  37.10.&ndash  
  x  
Corresponding Authors:  S De     E-mail:  subhadeep@mail.nplindia.org

Cite this article: 

N Batra, B K Sahoo, S De An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks 2016 Chin. Phys. B 25 113703

[1] Bauch A and Telle H R 2002 Rep. Prog. Phys. 65789
[2] Poli N, Oates C W, Gill P and Tino G M 2013 Riv. Nuovo Cimento 36555
[3] Takamoto M, Ushijima I, Das M, Nemitz N, Ohkubo T, Yamanaka K, Ohmae N, Takano T, Akatsuka T, Yamaguchi A and Katori H 2015 C. R. Phys. 16489
[4] Rosenband T 2008 Science 3191808
[5] Gill P, Barwood G P, Klein H A, Huang G, Webster S A, Blythe P J, Hosaka K, Lea S N and Margolis H S 2003 IEEE Meas. Sci. Technol. 141174
[6] Godun R M 2014 Phys. Rev. Lett. 113210801
[7] Tamm C, Weyers S, Lipphardt B and Peik E 2009 Phys. Rev. A 80043403
[8] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108090801
[9] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113210802
[10] Wang Y H, Dumke R, Liu T, Stejskal A, Zhao Y N, Zhang J, Lu Z H, Wang L J, Becker T and Walther H O 2007 Opt. Comm. 273526
[11] Dube P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87023806
[12] Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89050501
[13] Huang Y, Liu P, Bian W, Guan H and Gao K 2014 Appl. Phys. B 114189
[14] Kajita M, Li Y, Matsubara K, Hayasaka K and Hosokawa M 2005 Phys. Rev. A 72043404
[15] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104070802
[16] Nandy D K and Sahoo B K 2014 Phys. Rev. A 90050503
[17] Webster S A, Godun R M, King S A, Huang G, Walton B, Tsatourian V, Margolis H S, Lea S and Gill P 2010 IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 573
[18] Tamm C, Huntemann N, Lipphardt B, Gerginov V, Nemitz N, Kazda M, Weyers S and Peik E 2014 Phys. Rev. A 89023820
[19] Roberts M, Taylor P, Gateva-Kostova S V, Clarke R B M, Rowley W R C and Gill P 1999 Phys. Rev. A 602867
[20] King S A, Godun R M, Webster S A, Margolis H S, Johnson L A M, Szymaniec K, Baird P E G and Gill P 2012 New J. Phys. 14013045
[21] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116063001
[22] Dzuba V A and Flambaum V V 2011 Phys. Rev. A 83052513
[23] Sahoo B K and Das B P 2011 Phys. Rev. A 84010502
[24] Dzuba V A, Flambaum V V, Safronova M S, Porsev S G, Pruttivarasin T, Hohensee M A and Haffner H 2016 Nat. Phys. 12465
[25] Dzuba V A, Flambaum V V and Marchenko M V 2003 Phys. Rev. A 68022506
[26] Dzuba V A and Flambaum V V 2008 Phys. Rev. A 77012515
[27] Nisbet-Jones P B R, King S A, Jones J M, Godun R M, Baynham C F A, Bongs K, Dolezal M, Balling P and Gill P 2016 Appl. Phys. B 12257
[28] Schneider T, Peik E and Tamm C 2005 Phys. Rev. Lett. 94230801
[29] Blythe P J, Webster S A, Hosaka K and Gill P 2003 J. Phys. B 36981
[30] Porsev S G, Safronova M S and Kozlov M G 2012 Phys. Rev. A 86022504
[31] Rastogi A, Batra N, Roy A, Thangjam J, Kalsi V P S, Panja S and De S 2015 MAPAN J. Metrology Society of India 30169
[32] De S, Batra N, Chakrabory S, Panja S and Sengupta A 2014 Current Science 1061348
[33] Ramsey N F 1956 Molecular Beams (London:Oxford Univ. Press)
[34] Itano W M 2000 J. Res. Nat. Inst. Stand. Tech., USA 105829
[35] Edmonds A R 1974 Angular Momentum in Quantum Mechanics (New Jersey:Princeton Univ. Press)
[36] Lindgren I and Morrison J 1986 Atomic Many-Body Theory (2nd Edn.) (Berlin:Springer-Verlag)
[37] Nandy D K and Sahoo B K 2013 Phys. Rev. A 88052512
[38] Sahoo B K, Nandy D K, Das B P and Sakemi Y Phys. Rev. A 91042507
[39] Itano W M 2006 Phys. Rev. A 73022510
[40] Latha K V P 2007 Phys. Rev. A 76062508
[41] Singh Y and Sahoo B K 2015 Phys. Rev. A 91030501
[42] Paul W 1990 Rev. Mod. Phys. 62531
[43] Schrama C A, Peik E, Smith W W and Walther H 1993 Opt. Commun. 10132
[44] Stein B 2010 Ph. D. thesis (Hannover:University of Hannover)
[45] Doležal M, Balling P, Nisbet-Jones P B R, King S A, Jones J M, KleinH A, Gill P, Lindvall T, Wallin A E, Merimaa M, Tamm C, Sanner C, Huntemann N, Scharnhorst N, Leroux I D, Schmidt P O, Burgermeister T, Mehlstäubler T E and Peik E 2015 arXiv:1510.05556
[46] Batra N, De S and Panja S 2016 The ion trap geometry dependent dynamics have been studied[Manuscript in preparation]
[47] Major F G, Gheorghe V N and Werth G2010 Charged Particle Traps (New York:Springer)
[48] 3D Charged Particle Optics Program (CPO-3D) CPO Ltd., USA
[49] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 8310
[50] Keller J, Partner H L, Burgermeister T and Mehlstäubler T E 2015 J. Appl. Phys. 118104501
[1] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[4] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[5] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[6] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[7] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[8] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[9] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
[10] Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas
Qu Su-Ping (屈苏平), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2013, 22(9): 099501.
[11] Miniaturized optical system for atomic fountain clock
Lü De-Sheng (吕德胜), Qu Qiu-Zhi (屈求智), Wang Bin (汪斌), Zhao Jian-Bo (赵剑波), Li Tang (李唐), Liu Liang (刘亮), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2011, 20(6): 063201.
[12] Scheme to generate and discriminate a type of multipartite maximally entangled states in ion-trap
Xue Li (薛丽), Huang Shou-Sheng (黄寿胜), Wu Lie (吴烈), Ji Yong-Yun (季永运), Jiang Nian-Quan (姜年权). Chin. Phys. B, 2011, 20(5): 050313.
[13] Magnetic field measurement based on a stimulated two-photon Raman transition
Zhou Zi-Chao(周子超),Wei Rong(魏荣),Shi Chun-Yan(史春艳), Li Tang(李唐),and Wang Yu-Zhu(王育竹) . Chin. Phys. B, 2011, 20(3): 034206.
[14] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
[15] A diode laser spectrometer at 634nm and absolute frequency measurements using optical frequency comb
Yi Lin(伊林), Yuan Jie(袁杰), Qi Xiang-Hui(齐向晖), Chen Wen-Lan(陈文兰), Zhou Da-Wei(周大伟), Zhou Tong(周通), Zhou Xiao-Ji(周小计), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2009, 18(4): 1409-1412.
No Suggested Reading articles found!