|
|
An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks |
N Batra1,2, B K Sahoo3, S De1,2 |
1 Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi, India;
2 CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India;
3 Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India |
|
|
Abstract We propose a new ion-trap geometry to carry out accurate measurements of the quadrupole shifts in the 171Yb ion. This trap will minimize the quadrupole shift due to the harmonic component of the confining potential by an order of magnitude. This will be useful to reduce the uncertainties in the clock frequency measurements of the 6s 2S1/2→4f136s2 2F7/2 and 6s 2S1/2→5d 2D3/2 transitions, from which we can deduce the precise values of the quadrupole moments (Θs) of the 4f136s2 2F7/2 and 5d 2D3/2 states. Moreover, it may be able to affirm the validity of the measured Θ value of the 4f136s2 2F7/2 state, for which three independent theoretical studies defer almost by one order of magnitude from the measurement. We also calculate Θs using the relativistic coupled-cluster (RCC) method. We use these Θ values to estimate the quadrupole shift that can be measured in our proposed ion trap experiment.
|
Received: 20 June 2016
Revised: 20 June 2016
Accepted manuscript online:
|
|
Corresponding Authors:
S De
E-mail: subhadeep@mail.nplindia.org
|
Cite this article:
N Batra, B K Sahoo, S De An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks 2016 Chin. Phys. B 25 113703
|
[1] |
Bauch A and Telle H R 2002 Rep. Prog. Phys. 65789
|
[2] |
Poli N, Oates C W, Gill P and Tino G M 2013 Riv. Nuovo Cimento 36555
|
[3] |
Takamoto M, Ushijima I, Das M, Nemitz N, Ohkubo T, Yamanaka K, Ohmae N, Takano T, Akatsuka T, Yamaguchi A and Katori H 2015 C. R. Phys. 16489
|
[4] |
Rosenband T 2008 Science 3191808
|
[5] |
Gill P, Barwood G P, Klein H A, Huang G, Webster S A, Blythe P J, Hosaka K, Lea S N and Margolis H S 2003 IEEE Meas. Sci. Technol. 141174
|
[6] |
Godun R M 2014 Phys. Rev. Lett. 113210801
|
[7] |
Tamm C, Weyers S, Lipphardt B and Peik E 2009 Phys. Rev. A 80043403
|
[8] |
Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108090801
|
[9] |
Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113210802
|
[10] |
Wang Y H, Dumke R, Liu T, Stejskal A, Zhao Y N, Zhang J, Lu Z H, Wang L J, Becker T and Walther H O 2007 Opt. Comm. 273526
|
[11] |
Dube P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87023806
|
[12] |
Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89050501
|
[13] |
Huang Y, Liu P, Bian W, Guan H and Gao K 2014 Appl. Phys. B 114189
|
[14] |
Kajita M, Li Y, Matsubara K, Hayasaka K and Hosokawa M 2005 Phys. Rev. A 72043404
|
[15] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104070802
|
[16] |
Nandy D K and Sahoo B K 2014 Phys. Rev. A 90050503
|
[17] |
Webster S A, Godun R M, King S A, Huang G, Walton B, Tsatourian V, Margolis H S, Lea S and Gill P 2010 IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 573
|
[18] |
Tamm C, Huntemann N, Lipphardt B, Gerginov V, Nemitz N, Kazda M, Weyers S and Peik E 2014 Phys. Rev. A 89023820
|
[19] |
Roberts M, Taylor P, Gateva-Kostova S V, Clarke R B M, Rowley W R C and Gill P 1999 Phys. Rev. A 602867
|
[20] |
King S A, Godun R M, Webster S A, Margolis H S, Johnson L A M, Szymaniec K, Baird P E G and Gill P 2012 New J. Phys. 14013045
|
[21] |
Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116063001
|
[22] |
Dzuba V A and Flambaum V V 2011 Phys. Rev. A 83052513
|
[23] |
Sahoo B K and Das B P 2011 Phys. Rev. A 84010502
|
[24] |
Dzuba V A, Flambaum V V, Safronova M S, Porsev S G, Pruttivarasin T, Hohensee M A and Haffner H 2016 Nat. Phys. 12465
|
[25] |
Dzuba V A, Flambaum V V and Marchenko M V 2003 Phys. Rev. A 68022506
|
[26] |
Dzuba V A and Flambaum V V 2008 Phys. Rev. A 77012515
|
[27] |
Nisbet-Jones P B R, King S A, Jones J M, Godun R M, Baynham C F A, Bongs K, Dolezal M, Balling P and Gill P 2016 Appl. Phys. B 12257
|
[28] |
Schneider T, Peik E and Tamm C 2005 Phys. Rev. Lett. 94230801
|
[29] |
Blythe P J, Webster S A, Hosaka K and Gill P 2003 J. Phys. B 36981
|
[30] |
Porsev S G, Safronova M S and Kozlov M G 2012 Phys. Rev. A 86022504
|
[31] |
Rastogi A, Batra N, Roy A, Thangjam J, Kalsi V P S, Panja S and De S 2015 MAPAN J. Metrology Society of India 30169
|
[32] |
De S, Batra N, Chakrabory S, Panja S and Sengupta A 2014 Current Science 1061348
|
[33] |
Ramsey N F 1956 Molecular Beams (London:Oxford Univ. Press)
|
[34] |
Itano W M 2000 J. Res. Nat. Inst. Stand. Tech., USA 105829
|
[35] |
Edmonds A R 1974 Angular Momentum in Quantum Mechanics (New Jersey:Princeton Univ. Press)
|
[36] |
Lindgren I and Morrison J 1986 Atomic Many-Body Theory (2nd Edn.) (Berlin:Springer-Verlag)
|
[37] |
Nandy D K and Sahoo B K 2013 Phys. Rev. A 88052512
|
[38] |
Sahoo B K, Nandy D K, Das B P and Sakemi Y Phys. Rev. A 91042507
|
[39] |
Itano W M 2006 Phys. Rev. A 73022510
|
[40] |
Latha K V P 2007 Phys. Rev. A 76062508
|
[41] |
Singh Y and Sahoo B K 2015 Phys. Rev. A 91030501
|
[42] |
Paul W 1990 Rev. Mod. Phys. 62531
|
[43] |
Schrama C A, Peik E, Smith W W and Walther H 1993 Opt. Commun. 10132
|
[44] |
Stein B 2010 Ph. D. thesis (Hannover:University of Hannover)
|
[45] |
Doležal M, Balling P, Nisbet-Jones P B R, King S A, Jones J M, KleinH A, Gill P, Lindvall T, Wallin A E, Merimaa M, Tamm C, Sanner C, Huntemann N, Scharnhorst N, Leroux I D, Schmidt P O, Burgermeister T, Mehlstäubler T E and Peik E 2015 arXiv:1510.05556
|
[46] |
Batra N, De S and Panja S 2016 The ion trap geometry dependent dynamics have been studied[Manuscript in preparation]
|
[47] |
Major F G, Gheorghe V N and Werth G2010 Charged Particle Traps (New York:Springer)
|
[48] |
3D Charged Particle Optics Program (CPO-3D) CPO Ltd., USA
|
[49] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 8310
|
[50] |
Keller J, Partner H L, Burgermeister T and Mehlstäubler T E 2015 J. Appl. Phys. 118104501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|