Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050507    DOI: 10.1088/1674-1056/24/5/050507
Special Issue: TOPICAL REVIEW — Precision measurement and cold matters
TOPICAL REVIEW—Precision measurement and cold matters Prev   Next  

Superfluidity of Bose–Einstein condensates in ultracold atomic gases

Zhu Qi-Zhong (朱起忠)a, Wu Biao (吴飙)a b c
a International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China;
c Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310014, China
Abstract  

Liquid helium 4 had been the only bosonic superfluid available in experiments for a long time. This situation was changed in 1995, when a new superfluid was born with the realization of the Bose–Einstein condensation in ultracold atomic gases. The liquid helium 4 is strongly interacting and has no spin; there is almost no way to change its parameters, such as interaction strength and density. The new superfluid, Bose–Einstein condensate (BEC), offers various advantages over liquid helium. On the one hand, BEC is weakly interacting and has spin degrees of freedom. On the other hand, it is convenient to tune almost all the parameters of a BEC, for example, the kinetic energy by spin–orbit coupling, the density by the external potential, and the interaction by Feshbach resonance. Great efforts have been devoted to studying these new aspects, and the results have greatly enriched our understanding of superfluidity. Here we review these developments by focusing on the stability and critical velocity of various superfluids. The BEC systems considered include a uniform superfluid in free space, a superfluid with its density periodically modulated, a superfluid with artificially engineered spin–orbit coupling, and a superfluid of pure spin current. Due to the weak interaction, these BEC systems can be well described by the mean-field Gross–Pitaevskii theory and their superfluidity, in particular critical velocities, can be examined with the aid of Bogoliubov excitations. Experimental proposals to observe these new aspects of superfluidity are discussed.

Keywords:  superfluidity      Bose–      Einstein condensation      ultracold atomic gases      Gross–      Pitaevskii theory  
Received:  23 January 2015      Revised:  23 March 2015      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921903 and 2012CB921300) and the National Natural Science Foundation of China (Grant Nos. 11274024, 11334001, and 11429402).

Corresponding Authors:  Wu Biao     E-mail:  wubiao@pku.edu.cn
About author:  05.30.Jp; 03.75.Mn; 03.75.Kk; 71.70.Ej

Cite this article: 

Zhu Qi-Zhong (朱起忠), Wu Biao (吴飙) Superfluidity of Bose–Einstein condensates in ultracold atomic gases 2015 Chin. Phys. B 24 050507

[1] Kapitsa P 1938 Nature 141 74
[2] Allen J F and Misener A D 1938 Nature 141 75
[3] Nozieres P and Pines D 1990 The Theory of Quantum Liquids, Vol. II (Addison-Wesley)
[4] Anderson M H, Ensher J R, Matthews N R, Wieman C E and Cornell E A 1995 Science 269 198
[5] London F 1954 Superfluids, Vol. II (Dover)
[6] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[7] Ho T L 1998 Phys. Rev. Lett. 81 742
[8] Ohmi T and Machida K 1998 J. Phys. Soc. Jpn. 67 1822
[9] Griesmaier A et al. 2005 Phys. Rev. Lett. 94 160401
[10] Landau L D 1941 J. Phys. USSR 5 71
[11] Landau L D 1941 Phys. Rev. 60 356
[12] Casey K F, Yeh C and Kaprielian Z A 1965 Phys. Rev. 140 B768
[13] Luo C Y, Ibanescu M, Johnson S G and Joannopoulos J D 2003 Science 299 368
[14] Carusotto I, Hu S X, Collins L A and Smerzi A 2006 Phys. Rev. Lett. 97 260403
[15] Lychkovskiy O 2014 Phys. Rev. A 89 033619
[16] Lychkovskiy O 2014 arXiv:1403.7408
[17] Raman C, Köhl M, Onofrio R, Durfee D S, Kuklewicz C E, Hadzibabic Z and Ketterle W 1999 Phys. Rev. Lett. 83 2502
[18] Keller W E 1969 Helium-3 and Helium-4 (New York: Plenum Press)
[19] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge: Cambridge University Press)
[20] Gardiner C W, Anglin J R and Fudge T I A 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1555
[21] Gardiner C W and Davis M J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 4731
[22] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[23] Lifshitz E M and Pitaevskii L P 1980 Statistical Physics, Part II (Oxford: Pergamon Press)
[24] Hugenholtz N M and Pines D 1959 Phys. Rev. 116 489
[25] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
[26] Chester G V 1970 Phys. Rev. A 2 256
[27] Kim E and Chan M H W 2004 Nature 427 6971
[28] Fallani L et al. 2004 Phys. Rev. Lett. 93 140406
[29] Wu B and Niu Q 2001 Phys. Rev. A 64 061603
[30] Wu B and Niu Q 2003 New J. Phys. 5 104
[31] Zhang Y and Wu B 2009 Phys. Rev. Lett. 102 093905
[32] Zhang Y, Liang Z and Wu B 2009 Phys. Rev. A 80 063815
[33] Machholm M, Pethick C J and Smith H 2003 Phys. Rev. A 67 053613
[34] Wu B and Shi J 2006 arXiv:cond-mat/0607098
[35] Onofrio R, Raman C, Vogels J M, Abo-Shaeer J R, Chikkatur A P and Ketterle W 2000 Phys. Rev. Lett. 85 2228
[36] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[37] Qi X L and Zhang S 2011 Rev. Mod. Phys. 83 1057
[38] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[39] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[40] Fu Z, Wang P, Chai S, Huang L and Zhang J 2011 Phys. Rev. A 84 043609
[41] Zhang J Y, Ji S C, Chen Z, et al. 2012 Phys. Rev. Lett. 109 115301
[42] Ji S C et al. 2014 Nat. Phys. 10 314
[43] Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[44] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[45] Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[46] Stanescu T D, Anderson B and Galitski V 2008 Phys. Rev. A 78 023616
[47] Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
[48] Yip S K 2011 Phys. Rev. A 83 043616
[49] Jian C M and Zhai H 2011 Phys. Rev. B 84 060508
[50] Gopalakrishnan S, Lamacraft A and Goldbart P M 2011 Phys. Rev. A 84 061604
[51] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
[52] Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602
[53] Zhang Q, Gong J and Oh C H 2010 Phys. Rev. A 81 023608
[54] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[55] Edmonds M J, Otterbach J, Unanyan R G, Fleischhauer M, Titov M and Öhberg P 2012 New J. Phys. 14 073056
[56] Messiah A 1961 Quantum Mechanics (Amsterdam: North-Holland)
[57] Zhu Q, Zhang C and Wu B 2012 Eur. Phys. Lett. 100 50003
[58] Merkl M, Jacob A, Zimmer F E, Ohberg P and Santos L 2010 Phys. Rev. Lett. 104 073603
[59] Larson J, Martikainen J P, Collin A and Sjoqvist E 2010 Phys. Rev. A 82 043620
[60] Zhang Y, Chen G and Zhang C 2013 Sci. Rep. 3 1937
[61] Onofrio R, Raman C, Vogels J M, Abo-Shaeer J R, Chikkatur A P and Ketterle W 2000 Phys. Rev. Lett. 85 2228
[62] Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E and Ketterle W 2004 Phys. Rev. Lett. 93 223201
[63] Du X, Wan S, Yesilada E, Ryu C, Heinzen D J, Liang Z and Wu B 2010 New J. Phys. 12 083025
[64] Ernst P T, Götze S, Krauser J S, Pyka K, Lühmann D, Pfannkuche D and Sengstock K 2010 Nat. Phys. 6 56
[65] Fujimoto K and Tsubota M 2012 Phys. Rev. A 85 033642
[66] Zhu Q, Sun Q F and Wu B 2015 Phys. Rev. A 91 023633
[67] Law C K, Chan C M, Leung P T and Chu M C 2001 Phys. Rev. A 63 063612
[68] Kuklov A B and Svistunov B V 2003 Phys. Rev. Lett. 90 100401
[69] Yukalov V I and Yukalova E P 2004 Laser Phys. Lett. 1 50
[70] Hoefer M A, Chang J J, Hamner C and Engels P 2011 Phys. Rev. A 84 041605
[71] Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
[72] Takeuchi H, Ishino S and Tsubota M 2010 Phys. Rev. Lett. 105 205301
[73] Ishino S, Tsubota M and Takeuchi H 2011 Phys. Rev. A 83 063602
[74] Kravchenko L Y and Fil D V 2009 J. Low Temp. Phys. 155 219
[75] Abad M, Sartori A, Finazzi S and Recati A 2014 Phys. Rev. A 89 053602
[76] Vengalattore M, Leslie S R, Guzman J and Stamper-Kurn D M 2008 Phys. Rev. Lett. 100 170403
[77] Cherng R W, Gritsev V, Stamper-Kurn D M and Demler E 2008 Phys. Rev. Lett. 100 180404
[78] Babaev E 2005 Phys. Rev. Lett. 94 137001
[79] Flayac H, Terças H, Solnyshkov D D and Malpuech G 2013 Phys. Rev. B 88 184503
[80] Montgomery T W A, Li W and Fromhold T M 2013 Phys. Rev. Lett. 111 105302
[81] Sun K and Bolech C J 2013 Phys. Rev. A 87 053622
[82] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[83] Petrov D S, Holzmann M and Shlyapnikov G V 2000 Phys. Rev. Lett. 84 2551
[84] Crubellier A, et. al. 1999 Eur. Phys. J. D 6 211
[85] Cohen-Tannoudji C, Diu B and Laloe F 1991 Quantum Mechanics, Vol. 1 (New York: Wiley)
[86] Sun Q F and Xie X C 2005 Phys. Rev. B 72 245305
[87] Sun Q F, Xie X C and Wang J 2008 Phys. Rev. B 77 035327
[88] Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (Singapore: World Scientific)
[89] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[90] Weisbuch C, Nishioka M, Ishikawa A and Arakawa Y 1992 Phys. Rev. Lett. 69 3314
[91] Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409
[92] Lagoudakis K G, Wouters M, Richard M, Baas A, Carusotto I, R André, Dang L S and Deveaud-Plédran B 2008 Nat. Phys. 4 706
[93] Amo A, Lefrère J, Pigeon S, et al. 2009 Nat. Phys. 5 805
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[3] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[4] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[5] Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2019, 28(1): 010307.
[6] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
[7] Superfluidity of coherent light in self-focusing nonlinear waveguides
Ze Cheng(成泽). Chin. Phys. B, 2017, 26(4): 046701.
[8] Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas
Xuebing Luo(罗学兵), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2016, 25(11): 110306.
[9] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[10] Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction
Lü Hao (吕昊), Zhu Shao-Bing (朱少兵), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(9): 090308.
[11] An effective method of accelerating Bose gases using magnetic coils
Lu Hai-Chang (卢海昌), Zhai Yue-Yang (翟跃阳), Pan Rui-Zhi (潘睿智), Yang Shi-Feng (杨仕锋). Chin. Phys. B, 2014, 23(9): 093701.
[12] Condensation of Fermions in the double-well potential
Chen Xin-Wei (陈欣委), Liu Zhong-Qiang (刘中强), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(2): 026701.
[13] Nonlinear resonance phenomenon of one-dimensional Bose–Einstein condensate under periodic modulation
Hua Wei (花巍), Liu Shi-Xing (刘世兴). Chin. Phys. B, 2014, 23(2): 020309.
[14] Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波). Chin. Phys. B, 2013, 22(3): 030315.
[15] The dynamics of three coupled dipolar Bose–Einstein condensates
Wu Jian-Hua (武建华), Xu Sheng-Nan (许胜男). Chin. Phys. B, 2013, 22(12): 120304.
No Suggested Reading articles found!