Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020309    DOI: 10.1088/1674-1056/23/2/020309
GENERAL Prev   Next  

Nonlinear resonance phenomenon of one-dimensional Bose–Einstein condensate under periodic modulation

Hua Wei (花巍)a, Liu Shi-Xing (刘世兴)b
a College of Physics and Technology, Shenyang Normal University, Shenyang 110034, China;
b College of Physics, Liaoning University, Shenyang 110036, China
Abstract  We investigate the effect of an external periodic modulation on the one-dimensional (1D) Bose–Einstein condensate with harmonic trapping potential. By numerically solving the Gross–Pitaevskii equation with symplectic algorithm, the nonlinear resonance phenomenon is shown and the corresponding Fourier spectrum is given. The autoresonance phenomenon is also presented under almost periodic external modulation, and it shows that the condensate eventually evolves into quasi-periodic oscillation.
Keywords:  Bose–      Einstein condensate      resonance      periodic modulation      symplectic method  
Received:  06 April 2013      Revised:  16 August 2013      Accepted manuscript online: 
PACS:  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247288 and 11301350).
Corresponding Authors:  Liu Shi-Xing     E-mail:  liushixing@lnu.edu.cn
About author:  03.75.Nt; 05.30.Jp; 02.60.Cb

Cite this article: 

Hua Wei (花巍), Liu Shi-Xing (刘世兴) Nonlinear resonance phenomenon of one-dimensional Bose–Einstein condensate under periodic modulation 2014 Chin. Phys. B 23 020309

[1] Ou B Y, Zhao X G, Liu J and Chen S G 2001 Phys. Lett. A 291 17
[2] Wu M Z, Zhou X J, Liu W M and Chen X Z 2010 Phys. Rev. A 81 033625
[3] Chen Y, Zhang K Z and Chen Y 2009 J. Phys. B: At. Mol. Opt. Phys. 42 185302
[4] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
[5] Wang Z X, Ni Z G, Cong F Z, Liu X S and Chen L 2010 Chin. Phys. B 19 113205
[6] Liu X X, Zhou X J, Zhang W, Vogt T, Lu B, Yue X G and Chen X Z 2011 Phys. Rev. A 83 063604
[7] Vidanović I, Balaž A, Al-Jibbouri H and Pelster A 2011 Phys. Rev. A 84 013618
[8] Muruganandam P and Adhikari S K 2003 J. Phys. B: At. Mol. Opt. Phys. 36 2501
[9] Adhikari S K 2003 J. Phys. B: At. Mol. Opt. Phys. 36 1109
[10] Rajendran S, Muruganandam P and Lakshmanan M 2007 Physica D 227 1
[11] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[12] Hoston W and You L 1996 Phys. Rev. A 53 4254
[13] Zhang S and Wang F 2002 Mod. Phys. Lett. B 16 519
[14] Liu X S, Qi Y Y, He J F and Ding P Z 2007 Commun. Comput. Phys. 2 1
[15] Hua W, Li B and Liu X S 2011 Chin. Phys. B 20 010311
[16] Hua W, Liu X S and Ding P Z 2006 J. Math. Chem. 40 243
[17] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[18] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[19] Marte A, Volz T, Schuster J, Durr S, Rempe G, van Kempen E G M and Verhaar B J 2002 Phys. Rev. Lett. 89 283202
[20] Roati G, Zaccanti M, D’Errico C, Catani J, Modugno M, Simoni A, Inguscio M and Modugno G 2007 Phys. Rev. Lett. 99 010403
[21] Ng H T and Bose S 2008 Phys. Rev. A 78 023610
[22] Dion C M and Cancés E 2003 Phys. Rev. E 67 046706
[23] He W P, Feng G L, Gao X Q and Chou J F 2006 Acta Phys. Sin. 55 3175 (in Chinese)
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[6] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[9] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[10] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[11] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[12] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[13] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[14] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[15] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
No Suggested Reading articles found!