CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Condensation of Fermions in the double-well potential |
Chen Xin-Wei (陈欣委), Liu Zhong-Qiang (刘中强), Kong Xiang-Mu (孔祥木) |
College of Physics and Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract The density distribution of ultracold two-component fermionic gases 6Li, which are confined in a gradient magnetic field and a symmetrical double-well potential, is investigated by employing local-density approximation. It is found that three different regimes including quasi-molecular Bose–Einstein condensation (BECm), the dimers in the unitarity limit (ULd), and Bardeen–Cooper–Schrieffer superfluid (BCS) can coexist at the same time. Furthermore, the ranges of these regimes can be controlled to some extent by tuning the gradient of the magnetic field and the parameters characterizing the properties of the double-well potential. This study is of guidance and significance for experimentally realizing the coexistence of BECm, ULd, and BCS in the double-well potential.
|
Received: 22 April 2013
Revised: 11 June 2013
Accepted manuscript online:
|
PACS:
|
67.10.Db
|
(Fermion degeneracy)
|
|
67.85.Lm
|
(Degenerate Fermi gases)
|
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275112), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2011AM018), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103705110004). |
Corresponding Authors:
Kong Xiang-Mu
E-mail: kongxm@mail.qfnu.edu.cn
|
About author: 67.10.Db; 67.85.Lm; 03.75.Ss |
Cite this article:
Chen Xin-Wei (陈欣委), Liu Zhong-Qiang (刘中强), Kong Xiang-Mu (孔祥木) Condensation of Fermions in the double-well potential 2014 Chin. Phys. B 23 026701
|
[1] |
Einstein A 1925 Sitz. Ber. Preuss. Akad. Wiss. 1 3
|
[2] |
London F 1938 Phys. Rev. 54 947
|
[3] |
Hecht C E 1959 Physica 25 1159
|
[4] |
Silvera I F and Walraven J T M 1980 Phys. Rev. Lett. 44 164
|
[5] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[6] |
Davis K B, Mewes M O, Andrews M R, Druten N J V, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[7] |
Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
|
[8] |
Donley E A, Claussen N R, Thompson S T and Wieman C E 2002 Nature 417 529
|
[9] |
Timmermans E, Furuya K, Milonni P W and Kerman A K 2001 Phys. Lett. A 285 228
|
[10] |
Holland M, Kokkelmans S J J M F, Chiofalo M L and Walser R 2001 Phys. Rev. Lett. 87 120406
|
[11] |
Milstein J N, Kokkelmans S J J M F and Holland M J 2002 Phys. Rev. A 66 043604
|
[12] |
Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
|
[13] |
Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
|
[14] |
Kinast J, Hemmer S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
|
[15] |
Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 203201
|
[16] |
Ma X D, Yang Z J, Lu J Z and Wei W 2011 Chin. Phys. B 20 070307
|
[17] |
Dong H and Ma Y L 2009 Chin. Phys. B 18 715
|
[18] |
Greiner M, Regal C A and Jin D S 2003 Nature 426 537
|
[19] |
Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101
|
[20] |
Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
|
[21] |
Xiong H W, Liu S J, Zhang W P and Zhan M S 2005 Phys. Rev. Lett. 95 120401
|
[22] |
Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E and Leanhardt A E 2004 Phys. Rev. Lett. 92 050405
|
[23] |
Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kruger P 2005 Nat. Phys. 1 57
|
[24] |
Mahmud K W, Perry H and Reinhardt W P 2005 Phys. Rev. A 71 023615
|
[25] |
Shomroni I, Lahoud E, Levy S and Steinhauer J 2009 Nat. Phys. 5 193
|
[26] |
LeBlanc L J, Bardon A B, McKeever J, Extavour M H T, Jervis D and Thywissen J H 2011 Phys. Rev. Lett. 106 025302
|
[27] |
Wang W Y, Yang Y, Meng H J, Ma Y, Qi P T, Ma Y Y and Duan W S 2012 Acta Phys. Sin. 61 100301 (in Chinese)
|
[28] |
Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
|
[29] |
Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
|
[30] |
Gehm M E, Hemmer S L, Granade S R, O’Hara K M and Thomas J E 2003 Phys. Rev. A 68 011401
|
[31] |
Carr L D, Chiaramonte R and Holland M J 2004 Phys. Rev. A 70 043609
|
[32] |
Petrov D S, Salomon C and Shlyapnikov G V 2004 Phys. Rev. Lett. 93 090404
|
[33] |
Ho T L 2004 Science 305 1114
|
[34] |
Strecker K E, Partridge G B and Hulet R G 2003 Phys. Rev. Lett. 91 080406
|
[35] |
O’Hara K M, Hemmer S L, Gehm M E, Granade S R and Thomas J E 2002 Science 298 2179
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|