Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037701    DOI: 10.1088/1674-1056/24/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of strain distribution on the morphology evolution of a Ge/GeO2 core/shell nanoparticle confined in ultrathin Al2O3 thinfilm by surface oxidation

Zhang Ying (章英)a, Huang Hong-Hua (黄红华)a, Liu Xiao-Shan (刘晓山)a, Luo Xing-Fang (骆兴芳)a, Yuan Cai-Lei (袁彩雷)a, Ye Shuang-Li (叶双莉)b
a Laboratory of Nanomaterials and Sensors, School of Physics, Electronics and Communication, Jiangxi Normal University, Nanchang 330022, China;
b Institute of Microelectronics and Information Technology, Wuhan University, Wuhan 430072, China
Abstract  The influence of strain distribution on morphology evolution of Ge/GeO2 core/shell nanoparticle confined in ultrathin Al2O3 thin film by surface oxidation is investigated. A finite-element simulation is performed to simulate the morphology evolution of the confined Ge/GeO2 core/shell nanoparticle under the influence of the local strain distribution. It indicates that the resultant oxidation-related morphology of Ge/GeO2 core/shell nanoparticle confined in ultrathin film is strongly dependent on the local strain distribution. On the other hand, the strain gradients applied on the confined GeO2 shell can be modified by the formation of polycrystalline GeO2 shell, which has potential application in tailoring the microstructure and morphology evolution of the Ge/GeO2 core/shell nanoparticle.
Keywords:  strain      deformation      nanoparticles  
Received:  26 June 2014      Revised:  16 October 2014      Accepted manuscript online: 
PACS:  77.80.bn (Strain and interface effects)  
  91.55.Mb (High strain deformation zones)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164008, 51461019, 51361013, 11174226, and 51371129).
Corresponding Authors:  Yuan Cai-Lei     E-mail:  clyuan@jxnu.edu.cn

Cite this article: 

Zhang Ying (章英), Huang Hong-Hua (黄红华), Liu Xiao-Shan (刘晓山), Luo Xing-Fang (骆兴芳), Yuan Cai-Lei (袁彩雷), Ye Shuang-Li (叶双莉) Influence of strain distribution on the morphology evolution of a Ge/GeO2 core/shell nanoparticle confined in ultrathin Al2O3 thinfilm by surface oxidation 2015 Chin. Phys. B 24 037701

[1] Talbot E, Larde R, Gourbilleau F, Dufour C and Pareige P 2009 Europhy. Lett. 87 26004
[2] Stavarache I, Lepadatu A M, Stoica T and Ciurea M L 2013 Appl. Surf. Sci. 285 175
[3] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F and Chan K 1996 Appl. Phys. Lett. 68 1377
[4] Bonafos C, Carrada M, Benassayag G, Schamm-Chardon S, Groenen J, Paillard V, Pecassou B, Claverie A, Dimitrakis P, Kapetanakis E, Ioannou-Sougleridisb V, Normandb P, Sahuc B and Slaouic A 2012 Mater. Sci. Semicond. Process 15 615
[5] Wellner A, Paillard V, Bonafos C, Coffin H, Claverie A, Schmidt B and Heinig K H 2003 J. Appl. Phys. 94 5639
[6] Chew H G, Zheng F, Choi W K, Chim W K, Foo Y L and Fitzgerald E A 2007 Nanotechnology 18 065302
[7] Johnson C L, Snoeck E, Ezcurdia M, Rodríguez-Gonzalez B, Pastoriza-Santos I, Liz-Marzan L M and Hÿtch M J 2007 Nat. Mater. 7 120
[8] Yuan C L, Ye S L, Xu B and Lei W 2012 Appl. Phys. Lett. 101 071909
[9] Pratt A, Lari L, Hovorka O, Shah A, Woffinden C, Tear S P, Binns C and Kröger R 2014 Nat. Mater. 13 26
[10] Yuan C L, Jiang Z X and Ye S L 2014 Nanoscale 6 1119
[11] Smith A M, Mohs A M and Nie S 2009 Nanotechnology 4 56
[12] Yuan C L, Liu Q and Xu B 2011 J. Phys. Chem. C 115 16374
[13] Jiang Z X, Yuan C L and Ye S L 2014 RCS Adv. 4 19584
[14] Andrievski R A 2014 J. Mater. Sci. 49 1449
[15] Peng Y J, Zhang S P, Wang Y H and Yang Y Q 2008 Chin. Phys. B 17 1674
[16] Fan G H, Qu S L, Guo Z Y, Wang Q and Li Z G 2012 Chin. Phys. B 21 047804
[17] Cozzoli P D, Pellegrino T and Manna L 2006 Chem. Soc. Rev. 35 1195
[18] Portilla L and Halik M 2014 ACS Appl. Mat. Inter. 6 5977
[19] Zeleňáková A, Zeleňák V, Michalík Š, Kováč J and Meisel M W 2014 Phys. Rev. B 89 104417
[20] Kwak K, Cho K and Kim S 2014 Appl. Phys. Lett. 104 103303
[21] Lei Z W, Liu M, Ge W, Fu Z P, Reinhardt K, Knize R J and Lu Y L 2012 Appl. Phys. Lett. 101 083903
[22] Yuan C L 2010 J. Phys. Chem. C 114 2124
[23] Yuan C L and Lee P S 2008 Nanotechnology 19 355206
[24] Yuan C L, Chu J G and Lei W 2010 Appl. Phys. A: Mater. Sci. Process 99 673
[25] Newton M C, Leake S J, Harder R and Robinson I K 2010 Nat. Mater. 9 120
[26] Gilbert B, Huang F, Zhang H, Waychunas G A and Banfield J F 2004 Science 305 651
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[9] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[13] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[14] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!