CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of strain distribution on the morphology evolution of a Ge/GeO2 core/shell nanoparticle confined in ultrathin Al2O3 thinfilm by surface oxidation |
Zhang Ying (章英)a, Huang Hong-Hua (黄红华)a, Liu Xiao-Shan (刘晓山)a, Luo Xing-Fang (骆兴芳)a, Yuan Cai-Lei (袁彩雷)a, Ye Shuang-Li (叶双莉)b |
a Laboratory of Nanomaterials and Sensors, School of Physics, Electronics and Communication, Jiangxi Normal University, Nanchang 330022, China; b Institute of Microelectronics and Information Technology, Wuhan University, Wuhan 430072, China |
|
|
Abstract The influence of strain distribution on morphology evolution of Ge/GeO2 core/shell nanoparticle confined in ultrathin Al2O3 thin film by surface oxidation is investigated. A finite-element simulation is performed to simulate the morphology evolution of the confined Ge/GeO2 core/shell nanoparticle under the influence of the local strain distribution. It indicates that the resultant oxidation-related morphology of Ge/GeO2 core/shell nanoparticle confined in ultrathin film is strongly dependent on the local strain distribution. On the other hand, the strain gradients applied on the confined GeO2 shell can be modified by the formation of polycrystalline GeO2 shell, which has potential application in tailoring the microstructure and morphology evolution of the Ge/GeO2 core/shell nanoparticle.
|
Received: 26 June 2014
Revised: 16 October 2014
Accepted manuscript online:
|
PACS:
|
77.80.bn
|
(Strain and interface effects)
|
|
91.55.Mb
|
(High strain deformation zones)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164008, 51461019, 51361013, 11174226, and 51371129). |
Corresponding Authors:
Yuan Cai-Lei
E-mail: clyuan@jxnu.edu.cn
|
Cite this article:
Zhang Ying (章英), Huang Hong-Hua (黄红华), Liu Xiao-Shan (刘晓山), Luo Xing-Fang (骆兴芳), Yuan Cai-Lei (袁彩雷), Ye Shuang-Li (叶双莉) Influence of strain distribution on the morphology evolution of a Ge/GeO2 core/shell nanoparticle confined in ultrathin Al2O3 thinfilm by surface oxidation 2015 Chin. Phys. B 24 037701
|
[1] |
Talbot E, Larde R, Gourbilleau F, Dufour C and Pareige P 2009 Europhy. Lett. 87 26004
|
[2] |
Stavarache I, Lepadatu A M, Stoica T and Ciurea M L 2013 Appl. Surf. Sci. 285 175
|
[3] |
Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F and Chan K 1996 Appl. Phys. Lett. 68 1377
|
[4] |
Bonafos C, Carrada M, Benassayag G, Schamm-Chardon S, Groenen J, Paillard V, Pecassou B, Claverie A, Dimitrakis P, Kapetanakis E, Ioannou-Sougleridisb V, Normandb P, Sahuc B and Slaouic A 2012 Mater. Sci. Semicond. Process 15 615
|
[5] |
Wellner A, Paillard V, Bonafos C, Coffin H, Claverie A, Schmidt B and Heinig K H 2003 J. Appl. Phys. 94 5639
|
[6] |
Chew H G, Zheng F, Choi W K, Chim W K, Foo Y L and Fitzgerald E A 2007 Nanotechnology 18 065302
|
[7] |
Johnson C L, Snoeck E, Ezcurdia M, Rodríguez-Gonzalez B, Pastoriza-Santos I, Liz-Marzan L M and Hÿtch M J 2007 Nat. Mater. 7 120
|
[8] |
Yuan C L, Ye S L, Xu B and Lei W 2012 Appl. Phys. Lett. 101 071909
|
[9] |
Pratt A, Lari L, Hovorka O, Shah A, Woffinden C, Tear S P, Binns C and Kröger R 2014 Nat. Mater. 13 26
|
[10] |
Yuan C L, Jiang Z X and Ye S L 2014 Nanoscale 6 1119
|
[11] |
Smith A M, Mohs A M and Nie S 2009 Nanotechnology 4 56
|
[12] |
Yuan C L, Liu Q and Xu B 2011 J. Phys. Chem. C 115 16374
|
[13] |
Jiang Z X, Yuan C L and Ye S L 2014 RCS Adv. 4 19584
|
[14] |
Andrievski R A 2014 J. Mater. Sci. 49 1449
|
[15] |
Peng Y J, Zhang S P, Wang Y H and Yang Y Q 2008 Chin. Phys. B 17 1674
|
[16] |
Fan G H, Qu S L, Guo Z Y, Wang Q and Li Z G 2012 Chin. Phys. B 21 047804
|
[17] |
Cozzoli P D, Pellegrino T and Manna L 2006 Chem. Soc. Rev. 35 1195
|
[18] |
Portilla L and Halik M 2014 ACS Appl. Mat. Inter. 6 5977
|
[19] |
Zeleňáková A, Zeleňák V, Michalík Š, Kováč J and Meisel M W 2014 Phys. Rev. B 89 104417
|
[20] |
Kwak K, Cho K and Kim S 2014 Appl. Phys. Lett. 104 103303
|
[21] |
Lei Z W, Liu M, Ge W, Fu Z P, Reinhardt K, Knize R J and Lu Y L 2012 Appl. Phys. Lett. 101 083903
|
[22] |
Yuan C L 2010 J. Phys. Chem. C 114 2124
|
[23] |
Yuan C L and Lee P S 2008 Nanotechnology 19 355206
|
[24] |
Yuan C L, Chu J G and Lei W 2010 Appl. Phys. A: Mater. Sci. Process 99 673
|
[25] |
Newton M C, Leake S J, Harder R and Robinson I K 2010 Nat. Mater. 9 120
|
[26] |
Gilbert B, Huang F, Zhang H, Waychunas G A and Banfield J F 2004 Science 305 651
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|