Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028504    DOI: 10.1088/1674-1056/24/2/028504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mapping an on-chip terahertz antenna by a scanning near-field probe and a fixed field-effect transistor

Lü Li (吕利)a b, Sun Jian-Dong (孙建东)a, Roger A. Lewisc, Sun Yun-Fei (孙云飞)d, Wu Dong-Min (吴东岷)a d, Cai Yong (蔡勇)a, Qin Hua (秦华)a
a Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
c Institute for Superconducting and Electronic Materials and School of Physics, University of Wollongong, Wollongong, New South Wales 2522, Australia;
d i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  In the terahertz (THz) regime, the active region for a solid-state detector usually needs to be implemented accurately in the near-field region of an on-chip antenna. Mapping of the near-field strength could allow for rapid verification and optimization of new antenna/detector designs. Here, we report a proof-of-concept experiment in which the field mapping is realized by a scanning metallic probe and a fixed AlGaN/GaN field-effect transistor. Experiment results agree well with the electromagnetic-wave simulations. The results also suggest a field-effect THz detector combined with a probe tip could serve as a high sensitivity THz near-field sensor.
Keywords:  terahertz detector      terahertz antenna      near-field probe      high electron mobility transistor  
Received:  16 August 2014      Revised:  23 September 2014      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.80.Ey (III-V and II-VI semiconductors)  
  87.50.U-  
  87.64.mt (Near-field scanning)  
Fund: Project partially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-705), China Postdoctoral Science Foundation (Grant No. 2014M551678), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1301054B), Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201152), the National Natural Science Foundation of China (Grant No. 61271157), Suzhou Science and Technology Project (Grant No. ZXG2012024), and the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No. 2010T2J07).
Corresponding Authors:  Sun Jian-Dong, Qin Hua     E-mail:  dsun2008@sinano.ac.cn;hqin2007@sinano.ac.cn

Cite this article: 

Lü Li (吕利), Sun Jian-Dong (孙建东), Roger A. Lewis, Sun Yun-Fei (孙云飞), Wu Dong-Min (吴东岷), Cai Yong (蔡勇), Qin Hua (秦华) Mapping an on-chip terahertz antenna by a scanning near-field probe and a fixed field-effect transistor 2015 Chin. Phys. B 24 028504

[1] Sizov F and Rogalski A 2010 Progress in Quantum Electronics 34 278
[2] Tonouchi M 2007 Nat. Photon. 1 97
[3] Sun J D, Sun Y F, Wu D M, Cai Y, Qin H and Zhang B S 2012 Appl. Phys. Lett. 100 013506
[4] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504
[5] Tanigawa T, Onishi T, Takigawa S and Otsuji T 2010 Device Research Conference (DRC), South Bend, June 22, 2010, p. 167
[6] Lisauskas A, Mundt M, Seliuta D, Minkevicius L, Kasalynas I, Valusis G, Mittendorff M, Winnerl S, Krozer V and Roskos H G 2012 IEEE Trans. Microwave Theory 60 3834
[7] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865
[8] Dyer G C, Vinh N Q, Allen S J, Aizin G R, Mikalopas J, Reno J L and Shaner E A 2010 Appl. Phys. Lett. 97 193507
[9] Kim S, Zimmerman J D, Focardi P, Gossard A C, Wu D H and Sherwin M S 2008 Appl. Phys. Lett. 92 253508
[10] Sun J D, Qin H, Lewis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M and Zhang B S 2012 Appl. Phys. Lett. 100 173513
[11] Deibel J A, Escarra M, Berndsen N, Wang K and Mittleman D M 2007 Proc. IEEE 95 1624
[12] Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[13] Yang K, David G, Yook J G, Papapolymerou I, Katehi L P, Whitaker J F 2000 IEEE Trans. Microwave Theory 48 288
[14] Rosner B T and van der Weide D W 2002 Rev. Sci. Instrum. 73 2505
[15] Chen H T, Kersting R and Cho G C 2003 Appl. Phys. Lett. 83 3009
[16] Mitrofanov O, Bener I, Harel R, Wynn J D, Pfeiffer L N, West K W and Federici J 2000 Appl. Phys. Lett. 77 3496
[17] Mitrofanov O, Lee M, Hsu J W, Pfeiffer L N, West K W, Wynn J D and Federici J F 2001 Appl. Phys. Lett. 79 907
[18] Kawano Y and Ishibashi K 2008 Nat. Photon. 2 618
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[3] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[4] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[5] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[6] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[7] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[8] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[9] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[10] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[11] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
[12] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[13] Performance enhancement of CMOS terahertz detector by drain current
Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(9): 098401.
[14] A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates
Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2017, 26(4): 047305.
[15] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
No Suggested Reading articles found!