Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028503    DOI: 10.1088/1674-1056/24/2/028503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Nonlinear properties of the lattice network-based nonlinear CRLH transmission lines

Wang Zheng-Bin (王正斌)a b, Wu Zhao-Zhi (吴昭质)a, Gao Chao (高超)a
a School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
b School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract  The nonlinear properties of lattice network-based (LNB) composite right-/left-handed transmission lines (CRLH TLs) with nonlinear capacitors are experimentally investigated. Harmonic generation, subharmonic generation, and parametric excitation are clearly observed in an unbalanced LNB CRLH TL separately. While the balanced design of the novel nonlinear TL shows that the subharmonic generation and parametric processes can be suppressed, and almost the same power level of the higher harmonics can be achieved over a wide bandwidth range, which are difficult to find in conventional CRLH TLs.
Keywords:  composite right-/left-handed transmission line (CRLH TL)      nonlinear metamaterial      lattice network      microstrip  
Received:  16 July 2014      Revised:  12 September 2014      Accepted manuscript online: 
PACS:  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  84.40.Az (Waveguides, transmission lines, striplines)  
  84.40.Dc (Microwave circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 60990322, and 60990320), the China Postdoctoral Science Foundation (Grant No. 2012M521048), and the Collegiate Natural Science Fund of Jiangsu Province, China (Grant No. 12KJB140010).
Corresponding Authors:  Wang Zheng-Bin     E-mail:  wangzb@njupt.edu.cn

Cite this article: 

Wang Zheng-Bin (王正斌), Wu Zhao-Zhi (吴昭质), Gao Chao (高超) Nonlinear properties of the lattice network-based nonlinear CRLH transmission lines 2015 Chin. Phys. B 24 028503

[1] Caloz C and Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Hoboken, New Jersey: John Wiley & Sons Inc.)
[2] Eleftheriades G V and Balmain K G 2005 Negative-Refraction Metamaterials: Fundamental Principles and Applications (Hoboken, New Jersey: John Wiley & Sons Inc.)
[3] Caloz C, Lin I H and Itoh T 2004 Microwave Opt. Technol. Lett. 40 471
[4] Cui T J, Cheng Q, Huang Z Z and Feng Y J Phys. Rev. B 72 035112
[5] Kim H, Ho S J, Choi M K, Kozyrev A B and van der Weide D W 2006 IEEE Trans. Microw. Theory Tech. 54 4178
[6] Wang Z B, Feng Y J, Zhu B, Zhao J M and Jiang T 2010 J. Appl. Phys. 107 094907
[7] Xu H X, Wang G M, Liang J G and Peng Q 2012 Acta Phys. Sin. 61 074101 (in Chinese)
[8] Kim H, Kozyrev A B, Karbassi A and van der Weide D W 2007 IEEE Trans. Microw. Theory Tech. 55 571
[9] Wang Z B, Feng Y J, Zhao J M and Jiang T 2013 Sci. China: Inf. Sci. 56 2422
[10] Perruisseau-Carrier J and Skrivervik A K 2006 IEEE Trans. Microw. Theory Tech. 54 1582
[11] Esteban J, Camacho-Penalosa C, Page J E and Martin-Guerrero T M 2012 IEEE Trans. Microw. Theory Tech. 60 2385
[12] Sisó G, Gil M, Bonache J and Martin F 2008 IEEE Microw. Wireless Compon. Lett. 18 728
[13] Si L M, Hou J X, Liu Y and Lü X 2014 Acta Phys. Sin. 63 027802 (in Chinese)
[14] Kozyrev A B and van der Weide D W 2008 J. Phys. D: Appl. Phys. 41 173001
[15] Page J E, Esteban J and Camacho-Penalosa C 2011 IEEE Trans. Microw. Theory. Tech. 59 2422
[16] Bongard F and Mosig J R A 2008 IEEE AP-S Int. Symp. and USNC/URSI Meeting, July 5, 2008, San-Diego, CA, p. 1
[17] Bongard F, Perruisseau-Carrier J and Mosig J R 2008 Proc. Metamaterials'm08, September 22, Pamplona, Spain, p. 338
[18] Bongard F, Perruisseau-Carrier J and Mosig J R 2009 IEEE Microw. Wireless Compon. Lett. 19 431
[19] Champlin K S and Singh D R 1986 IEEE Trans. Microw. Theory Tech. 3 351
[20] Kozyrev A B and van der Weide D W 2005 IEEE Trans. Microw. Theory Tech. 53 238
[21] Kozyrev A B, Kim H, Karbassi A and van der Weide D W 2005 Appl. Phys. Lett. 87 121109
[22] Lin B Q, Da X, Zhao S H, Meng W, Li F, Fang Y W and Wang J F 2014 Chin. Phys. B 23 067801
[23] Kim H, Kozyrev A B, Su H and van der Weide D W 2005 IEEE MTT-S Int. Microw. Symp. Digest., June 12, 2005, New Jersey, USA, p. 4
[1] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[2] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[3] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[4] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[5] Retrieval of high-order susceptibilities of nonlinear metamaterials
Zhi-Yu Wang(王志宇), Jin-Peng Qiu(邱仅朋), Hua Chen(陈华), Jiong-Jiong Mo(莫炯炯), Fa-Xin Yu(郁发新). Chin. Phys. B, 2017, 26(9): 094207.
[6] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[7] High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size
Dan Wang(王丹), Bin Wei(魏斌), Yong Heng(衡勇), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(10): 108502.
[8] A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology
Ou-Peng Li(李欧鹏), Yong Zhang(张勇), Rui-Min Xu(徐锐敏), Wei Cheng(程伟), Yuan Wang(王元), Bing Niu(牛斌), Hai-Yan Lu(陆海燕). Chin. Phys. B, 2016, 25(5): 058401.
[9] Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST
Du Hong-Lei (杜洪磊), Xue Qian (薛倩), Gao Xiao-Yang (高小洋), Yao Feng-Rui (姚凤蕊), Lu Shi-Yang (卢世阳), Wang Ye-Long (汪业龙), Liu Chun-Heng (刘春恒), Zhang Yong-Cheng (张永成), Lü Yue-Guang (吕跃广), Li Shan-Dong (李山东). Chin. Phys. B, 2015, 24(12): 127704.
[10] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[11] Composite metamaterial enabled excellent performance of microstrip antenna array
Tang Ming-Chun (唐明春), Xiao Shao-Qiu (肖绍球), Guan Jian (官剑), Bai Yan-Ying (柏艳英), Gao Shan-Shan (高山山), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2010, 19(7): 074214.
No Suggested Reading articles found!