Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047101    DOI: 10.1088/1674-1056/27/4/047101

Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector

Jin-Lun Li(李金伦)1,2, Shao-Hui Cui(崔少辉)1, Jian-Xing Xu(徐建星)2,4, Xiao-Ran Cui(崔晓然)2,5, Chun-Yan Guo(郭春妍)2,6, Ben Ma(马奔)2,3, Hai-Qiao Ni(倪海桥)2,3, Zhi-Chuan Niu(牛智川)2,3
1. Department of Missile Engineering, Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China;
2. State Key Laboratory for Superlattices, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China;
3. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
4. Microsystem & Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
5. Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an 710071, China;
6. Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology of Chinese Academy of Sciences, Xi'an Institute of Optics and Precision Mechanics, Xi'an 710119, China
Abstract  The samples of InxGa1-xAs/In0.52Al0.48As two-dimensional electron gas (2DEG) are grown by molecular beam epitaxy (MBE). In the sample preparation process, the In content and spacer layer thickness are changed and two kinds of methods, i.e., contrast body doping and δ-doping are used. The samples are analyzed by the Hall measurements at 300 K and 77 K. The InxGa1-xAs/In0.52Al0.48As 2DEG channel structures with mobilities as high as 10289 cm2/V·(300 K) and 42040 cm2/V·(77 K) are obtained, and the values of carrier concentration (Nc) are 3.465×1012/cm2 and 2.502×1012/cm2, respectively. The THz response rates of InP-based high electron mobility transistor (HEMT) structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory. The results provide a reference for the research and preparation of InP-based HEMT THz detectors.
Keywords:  THz detector      high electron mobility transistor      two-dimensional electron gas      InP  
Received:  01 December 2017      Revised:  24 December 2017      Accepted manuscript online: 
PACS:  71.10.Ca (Electron gas, Fermi gas)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Ea (III-V semiconductors)  
Fund: Project supported by the Foundation for Scientific Instrument and Equipment Development, Chinese Academy of Sciences (Grant No. YJKYYQ20170032) and the National Natural Science Foundation of China (Grant No. 61435012).
Corresponding Authors:  Hai-Qiao Ni     E-mail:

Cite this article: 

Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector 2018 Chin. Phys. B 27 047101

[1] Cao J C 2012 Semiconductor terahertz sources, detectors and applications (Beijing:Science Press) p. 1(in Chinese)
[2] Xu J X, Li J L, Wei S H, Ma B, Zhang Y, Zhang Y, Ni H Q and Niu Z C 2017 Chin. Phys. B 26 088702
[3] Qin H, Huang Y D, Sun J D, Zhang Z P, Yu Y, Li X and Sun Y F 2017 Chin. Opt. 10 51
[4] Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278
[5] Dyakonov M, Shur M 1993 Phys. Rev. Lett. 71 2465
[6] Victor R, Irina K, Maxim R and Akira S 2007 International Journal of High Speed Electronics and Systems 17 521
[7] Huang J, Guo T Y, Zhang H Y, Xu J B, Fu X J, Yang H and Niu J B 2010 J. Semicond. 31 074008
[8] Taiichi O 2011 Progress In Electromagnetics Research Symposium Proceedings, March 20-23, 2011, Marrakesh, Morocco, p. 1266
[9] Taiichi O, Takayuki W, Stephane A B T, Akira S, Victor R, Vyacheslav P and Wojciech K 2014 Opt. Eng. 53 031206
[10] Dyakonov M, Shur M 1996 IEEE Trans. Electron Dev. 43 1640
[11] LU J Q, Shur M S, Hesler J L and Sun L 1998 IEEE Electron Dev. Lett. 19 373
[12] Koo B H, Hanada T, Makino H, Chang J H and Yao T 2001 J. Crystal Growth 229 142
[13] Zhou S X, Qi M, Ai L K and Xu A H 2016 Chin. Phys. B 25 096801
[14] Wang H P, Wang G L, Yu Y, Xu Y Q, Ni H Q, Niu Z C and Gao F Q 2013 Acta Phys. Sin. 62 194205(in Chinese)
[15] Duque C A, Akimov V, Demediuk R, Belykh V, Tiutiunnyk A, Morales A L, Restrepo R L, Nalivayko O, Fomina O, Mora-Ramos M E and Tulupenko V 2015 Superlattices and Microstructures 87 5
[16] Daoudi M, Dhifallah I, Ouerghi A and Chtourou R 2012 Superlattices & Microstructures 51 497
[17] Wang L M and Cao J C 2008 J. Semicond. 29 1357
[18] Collin R E 1985 Antennas and Radiowave Propagation (New York:McCraw Hill) p. 79
[19] Seliuta D, Kašalynas I, Tamošiünas V, Balakauskas S, Martünas Z, Ašmontas S, Valušis G, Lisauskas A, Roskos H G and Köhler K 2006 Electron. Lett. 42 825
[20] Guo N, Hu W D, Chen X S, Wang L and Lu W 2013 Opt. Express 21 1606
[21] Liu H R, Yu J S, Peter H and Byron A 2013 Int. J. Anten. Propag. 3 607
[22] Dyer G C, Vinh N Q, Allen S J, Aizin G R, Mikalopas J, Reno J L and Shaner E A 2010 Appl. Phys. Lett. 97 193507
[23] Knap W, Deng Y, Rumyantsev S, Lü J Q, Shur M S, Saylor C A and Brunel L C 2002 J. Appl. Phys. 91 9346
[24] Li J L, Cui S H, Xu J X, Yuan Y, Su X B, Ni H Q and Niu Z C 2017 J. Infrared Millim. Waves 36 790(in Chinese)
[1] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[2] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[5] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[6] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[7] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[8] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[9] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[10] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[11] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[12] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[13] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[14] A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏). Chin. Phys. B, 2021, 30(12): 120701.
[15] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
No Suggested Reading articles found!