INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition |
Ya-Chao Zhang(张雅超)1, Zhi-Zhe Wang(王之哲)2, Rui Guo(郭蕊)1, Ge Liu(刘鸽)1, Wei-Min Bao(包为民)3, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1 |
1. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3. School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China |
|
|
Abstract Pulsed metal organic chemical vapor deposition was employed to grow nearly polarization matched InAlGaN/GaN heterostructures. A relatively low sheet carrier density of 1.8×1012 cm-2, together with a high electron mobility of 1229.5 cm2/V·s, was obtained for the prepared heterostructures. The surface morphology of the heterostructures was also significantly improved, i.e., with a root mean square roughness of 0.29 nm in a 2 μm×2 μm scan area. In addition to the improved properties, the enhancement-mode metal–oxide–semiconductor high electron mobility transistors (MOSHEMTs) processed on the heterostructures not only exhibited a high threshold voltage (VTH) of 3.1 V, but also demonstrated a significantly enhanced drain output current density of 669 mA/mm. These values probably represent the largest values obtained from the InAlGaN based enhancement-mode devices to the best of our knowledge. This study strongly indicates that the InAlGaN/GaN heterostructures grown by pulsed metal organic chemical vapor deposition could be promising for the applications of novel nitride-based electronic devices.
|
Received: 25 August 2018
Revised: 22 October 2018
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201700184) and the National Key Research and Development Program of China (Grant Nos. 2016YFB0400105 and 2017YFB0403102). |
Corresponding Authors:
Ya-Chao Zhang
E-mail: xd_zhangyachao@163.com
|
About author: 73.40.Kp; 81.05.Ea; 85.30.De |
Cite this article:
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition 2019 Chin. Phys. B 28 018102
|
[1] |
Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
|
[2] |
Wang Y G, Feng Z H, Lv Y J, Tan X, Dun S B, Fang Y L and Cai S J 2016 Chin. Phys. B 25 107106
|
[3] |
Li J, Lv Y, Li C, Ji Z, Pang Z, Xu X and Xu M 2017 Chin. Phys. B 26 098504
|
[4] |
Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514
|
[5] |
Lu B, Saadat O I and Palacios T 2010 IEEE Electron Device Lett. 31 990
|
[6] |
Hahn H, Lükens G, Ketteniss N, Kalisch H and Vescan A 2011 Appl. Phys. Express 4 114102
|
[7] |
Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
|
[8] |
Cai Y, Zhou Y G, Lau K M and Chen K J 2006 IEEE Trans. Electron. Devices 53 2207
|
[9] |
Wang R, Cai Y, Tang W, Lau K M and Chen K J 2006 EEE Electron. Device Lett. 27 633
|
[10] |
Deguchi T, Kikuchi T, Arai M and Yamasaki K 2012 IEEE Electron Device Lett. 33 1249
|
[11] |
Mizutani T, Yamada H, Kishimoto S and Nakamura F 2013 J. Appl. Phys. 113 034502
|
[12] |
Wang M, Wang Y, Zhang C, Xie B, Wen C, Wang J, Hao Y L, Wu W G, Chen K J and Shen B 2014 IEEE Trans. Electron. Devices 61 2035
|
[13] |
Liu Y, Egawa T and Jiang H 2006 Electron. Lett. 42 884
|
[14] |
Ketteniss N, Askar A, Reuters B, Noculak A, Hollyänder B, Kalisch H and Vescan A 2012 Semicond. Sci. Technol. 27 055012
|
[15] |
Hahn H, Reuters B, Wille A, Ketteniss N, Benkhelifa F, Ambacher O, Kalisch H and Vescan A 2012 Semicond. Sci. Technol. 27 055004
|
[16] |
Ketteniss N, Behmenburg H, Hahn H, Noculak A, Holländer B, Kalisch H, Heuken M and Vescan A 2012 IEEE Electron Device Lett. 33 519
|
[17] |
Reuters B, Wille A, Ketteniss N, Hahn H, Hollyänder B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826
|
[18] |
Jena D, Simon J, Wang A, Cao Y, Goodman K, Verma J, Ganguly S, Li G, Karda K, Protasenko V, Lian C, Kosel T, Fay P and Xing H 2011 Phys. Status Solidi A 208 1511
|
[19] |
Liu Y, Jiang H, Arulkumaran S, Egawa T, Zhang B and Ishikawa H 2005 Appl. Phys. Lett. 86 223510
|
[20] |
Xue J, Hao Y, Zhou X, Zhang J, Yang C, Ou X, Shi L, Wang H, Yang L and Zhang J 2011 J. Cryst. Growth 314 359
|
[21] |
Zhang Y, Zhou X, Xu S, Wang Z, Chen Z, Zhang J, Zhang J and Hao Y 2015 AIP Adv. 5 127102
|
[22] |
Zhang Y, Zhou X, Xu S, Chen D, Wang Z, Wang X, Zhang J, Zhang J and Hao Y 2016 Chin. Phys. B 25 018102
|
[23] |
Zhang Y, Zhou X, Xu S, Zhang J, Zhang J and Hao Y 2016 Appl. Phys. Express 9 061003
|
[24] |
Zhang Y, Wang Z, Xu S, Chen D, Bao W, Zhang J, Zhang J and Hao Y 2017 Appl. Phys. Lett. 111 222107
|
[25] |
Zhang Y, Wang Z, Xu S, Bao W, Zhang T, Huang J, Zhang J and Hao Y 2018 Mater. Res. Bull. 105 368
|
[26] |
Yu S F, Chang S J, Lin R M, Lin Y H, Lu Y C, Chang S P and Chiou Y Z 2010 J. Cryst. Growth 312 1920
|
[27] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[28] |
Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys. Condens. Matter. 14 3399
|
[29] |
He Y, Mi M, Wang C, Zheng X, Zhang M, Zhang H, Wu J, Yang L, Zhang P, Ma X and Hao Y 2017 IEEE Electron Device Lett. 38 1421
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|