INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of defects properties on InP-based high electron mobility transistors |
Shu-Xiang Sun(孙树祥)1, Ming-Ming Chang(常明铭)1, Meng-Ke Li(李梦珂)1, Liu-Hong Ma(马刘红)1, Ying-Hui Zhong(钟英辉)1, Yu-Xiao Li(李玉晓)1, Peng Ding(丁芃)2, Zhi Jin(金智)2, Zhi-Chao Wei(魏志超)3 |
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 China Academy of Space Technology, Beijing 100086, China |
|
|
Abstract The performance damage mechanism of InP-based high electron mobility transistors (HEMTs) after proton irradiation has been investigated comprehensively through induced defects. The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley-Read-Hall recombination model. The results indicate that only acceptor-like defects have a significant influence on device operation. Meanwhile, as defect energy level ET shifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ET above 0.5 eV. This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more. Additionally, the drain current and transconductance degrade more severely with larger acceptor concentration. These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.
|
Received: 14 March 2019
Revised: 17 April 2019
Accepted manuscript online:
|
PACS:
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
14.20.Dh
|
(Protons and neutrons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775191, 61404115, 61434006, and 11475256), the Development Fund for Outstanding Young Teachers in Zhengzhou University of China (Grant No. 1521317004), and the Doctoral Student Overseas Study Program of Zhengzhou University, China. |
Corresponding Authors:
Ying-Hui Zhong
E-mail: zhongyinghui@zzu.edu.cn
|
Cite this article:
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超) Effect of defects properties on InP-based high electron mobility transistors 2019 Chin. Phys. B 28 078501
|
[1] |
Shangguan L, Ma L H, Li M K, Peng W, Zhong Y H, Su Y F and Duan Z Y 2018 J. Phys. D: Appl. Phys. 51 185603
|
[2] |
Wang W, Su Y F, Liu C R, Li D X, Wang P and Duan Z Y 2015 Chin. Phys. Lett. 32 128102
|
[3] |
Ma L H, Han W H, Zhao X S, Cao Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 088106
|
[4] |
Del Alamo J A 2011 Nature 479 317
|
[5] |
Mateos J, Rodilla H, Vasallo B G and González T 2015 J. Comput. Electron. 14 72
|
[6] |
Chen J, Zhang Z Y, Zhu M, Xu J T and Li X Y 2017 Nanoscale Res. Lett. 12 33
|
[7] |
Wang Y, Sheng X Z, Guo Q L, Li X L, Wang S F, Fu G S, Mazur Y I, Maidaniuk Y, Ware M E, Salamo G J, Liang B L and Huffaker D L 2017 Nanoscale Res. Lett. 12 229
|
[8] |
Ajayan J, Ravichandran T, Prajoon P, Pravin J C and Nirmal D 2018 J. Comput. Electron. 17 265
|
[9] |
Mei X B, Yoshida W, Lange M, Lee J, Zhou J, Liu P H, Leong K, Zamora A, Padilla J, Sarkozy S, Lai R and Deal W R 2015 IEEE Electron Device Lett. 36 327
|
[10] |
Ajayan J and Nirmal D 2016 Superlattices Microstruct. 100 526
|
[11] |
Jo H B, Baek J M, Yun D Y, Son S W, Lee J H, Kim T W, Kim D H, Tsutsumi T, Sugiyama H and Matsuzaki H 2018 IEEE Electron Device Lett. 39 1640
|
[12] |
Takahashi T, Kawano Y, Makiyama K, Shiba S, Sato M, Nakasha Y and Hara N 2017 IEEE Trans. Electron Device 64 89
|
[13] |
Kumar A, Jalota S and Gupta R 2012 Adv. Space Res. 49 1691
|
[14] |
Lee I H, Lee C, Choi B K, Yun Y and Chang Y J 2018 J. Korean Phys. Soc. 72 920
|
[15] |
Kim H Y, Lo C F, Liu L, Ren F, Kim J and Pearton S J 2012 Appl. Phys. Lett. 100 012107
|
[16] |
Rossetto I, Rampazzo F, Gerardin F, Meneghini M, Bagatin M, Zanandrea A, Dua C, di Forte-Poisson M A, Aubry R, Oualli M, Delage S L, Paccagnella A, Meneghesso G and Zanoni E 2015 Solid State Electron. 113 15
|
[17] |
Sun S X, Chang M M, Zhang C, Cheng C, Li Y X, Zhong Y H, Ding D, Jin Z and Wei Z C 2018 Phys. Status Solidi RRL 12 1800027
|
[18] |
Ratti L, Manghisoni M, Oberti E, Re V, Speziali V, Traversi G, Fallica G and Modica R 2005 IEEE Trans. Nucl. Sci. 52 1040
|
[19] |
Wang B, Zhao Y W, Dong Z Y, Deng A H, Miao S S and Yang J 2007 Acta Phys. Sin. 56 1603 (in Chinese)
|
[20] |
Zhong Y H, Wang W B, Sun S X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700411
|
[21] |
Zhong Y H, Yang J, Li X J, Ding P and Jin Z 2015 J. Korean Phys. Soc. 66 1020
|
[22] |
Patrick E, Law M, Liu L, Cuervo C V, Xi Y Y, Ren F and Pearton S J 2013 IEEE Trans. Nucl. Sci. 60 4103
|
[23] |
Liu M, Zhang Y M, Lü H L and Zhang Y M 2016 J. Semicond. 37 114005
|
[24] |
Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D 2018 Phys. Status Solidi A 215 1700368
|
[25] |
Hafsi B, Boubaker A, Ismaïl N, Kalboussi A and Lmimouni K 2015 J. Korean Phys. Soc. 67 1201
|
[26] |
Jayakumar G D and Srinivasan R 2017 J. Comput. Electron. 16 307
|
[27] |
Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P and Zhong Y H 2016 Chin. Phys. B 25 108501
|
[28] |
Sun S X, Ma L H, Cheng C, Zhang C, Zhong Y H, Li Y X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700322
|
[29] |
Liu M, Zhang Y M, Lu H L, Zhang Y M, Zhang J C and Ren X T 2015 Solid State Electron. 109 52
|
[30] |
Zhang Z, Cardwell D, Sasikumar A, Kyle E C H, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, Speck J S, Arehart A R and Ringel S A 2016 J. Appl. Phys. 119 165704
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|