Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098401    DOI: 10.1088/1674-1056/26/9/098401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance enhancement of CMOS terahertz detector by drain current

Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋)
College of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  

In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor field-effect transistors (MOSFETs) both theoretically and experimentally. The analytical model, which is based on the small-signal equivalent circuit of MOSFETs, predicts the significant improvement of the voltage responsivity Rv with the bias current. The experiment on antennas integrated with MOSFETs agrees with the analytical model, but the Rv improvement is accompanied first by a decrease, then an increase of the low-noise equivalent power (NEP) with the applied current. We determine the tradeoff between the low-NEP and high-Rv for the current-biased detectors. As the best-case scenario, we obtained an improvement of about six times in Rv without the cost of a higher NEP. We conclude that the current supply scheme can provide high-quality signal amplification in practical CMOS terahertz detection.

Keywords:  drain current      CMOS terahertz detectors      voltage responsivity      noise equivalent power  
Received:  17 April 2017      Revised:  07 June 2017      Accepted manuscript online: 
PACS:  84.40.Lj (Microwave integrated electronics)  
  85.30.Tv (Field effect devices)  
  87.50.U-  
  87.57.cm (Noise)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFB-0402403), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20141321), CAST Project, China (Grant No. 08201601), and the National Science Foundation for Young Scholars of China (Grant No. 61404072).

Corresponding Authors:  Xiaoli Ji     E-mail:  xji@nju.edu.cn

Cite this article: 

Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋) Performance enhancement of CMOS terahertz detector by drain current 2017 Chin. Phys. B 26 098401

[1] Sherry H, Hadi R A, Grzyb J, Öjefors E, Cathelin A, Kaiser A and Pfeiffer U R 2011 Radio Frequency Integrated Circuits Symposium (RFIC) 1-4
[2] Sengupta K, Seo D, Yang L and Hajimiri A 2015 IEEE Trans. Terahertz Sci. Tech. 5 427
[3] Schuster F, Coquillat D, Videlier H, Sakowicz M, Teppe F, Dussopt L, Giffard B, Skotnicki T and Knap W 2011 Optics Express 19 7827
[4] Hadi R A, Sherry H, Grzyb J, Zhao Y, Forster W, Keller H, Cathelin A, Kaiser A and Pfeiffer U R 2012 IEEE Journal of Solid-State Circuits 47 2999
[5] Schuster F, Videlier H, Dupret A, Coquillat D, Sakowicz M, Rostaing J, Tchagaspanian M, Giffard B and Knap W 2011 IEEE International Solid-State Circuits Conference 42
[6] Lisauskas A, Pfeiffer U, Öjefors E, Bolivar P H, Glaab D and Roskos H G 2009 J. Appl. Phys. 105 114511
[7] Ryu M W, Lee J S, Park K, Kim K R, Park W K and Han S T 2013 Simulation of Semiconductor Processes and Devices (SISPAD) 200
[8] Dyakonov M and Shur M 1993 Phys. Rev. Lett. 71 2465
[9] Tombet S B, Tanimoto Y, Satou A, Suemitsu T, Wang Y, Minamide H, Ito H, Fateev D V, Popov V and Otsuji T 2014 Appl. Phys. Lett. 104 262104
[10] Lisauskas A, Boppel S, Matukas J, Palenskis V, Minkevičius L, Valušis G, Bolívar P H and Roskos H G 2013 Appl. Phys. Lett. 102 153505
[11] Veksler D, Teppe F, Dmitriev A P, Kachorovskii V Y, Knap W and Shur M S 2006 Phys. Rev. B 73 125328
[12] Lu J Q and Shur M S 2001 Appl. Phys. Lett. 78 2587
[13] Fatimy A E, Teppe F, Dyakonova N, Knap W, Seliuta D, Valusis G, Shchepetov A, Roelens Y, Bollaert S, Cappy A and Rumyantsev S 2006 Appl. Phys. Lett. 89 131926
[14] Knap W, Deng Y, Rumyantsev S, Lu J Q, Shur M S, Saylor C A and Brunel L C 2002 Appl. Phys. Lett. 80 3433
[15] Knap W, Kachorowskii V, Deng Y, Rumyantsev S, Lu J Q, Gaska R, Shur M S, Simin G, Hu X and Khan M A 2002 J. Appl. Phys. 91 9346
[16] Meziani Y M, Lusakowski J, Dyakonova N, Knap W, Seliuta D, Sirmulis E, Deverson J, Valusis G, Boeuf F and Skotnicki T 2006 IEICE Trans. Electr. E89-C 993
[17] Dyer G C, Crossno J D, Aizin G R, Mikalopas J, Shaner E A, Wanke M C, Reno J L and Allen S J 2009 Proc. SPIE 721503
[18] Elkhatib T A, Kachorovskii V Y, Stillman W J, Rumyantsev S, Zhang X C and Shur M S 2011 Appl. Phys. Lett. 98 243505
[19] Haartman M V and Östling M 2007 Low-frequency Noise in Advanced MOS Devices (Springer Science & Business Media) pp. 11-12
[20] Behzad R 2003 Design of Analog CMOS Integrated Circuits (Xi'an: Xi'an Jiaotong University Press) pp. 116-121
[1] Nb5N6 microbolometer array for terahertz detection
Tu Xue-Cou (涂学凑), Kang Lin (康琳), Liu Xin-Hua (刘新华), Mao Qing-Kai (毛庆凯), Wan Chao (万超), Chen Jian (陈健), Jin Biao-Bing (金飚兵), Ji Zheng-Ming (吉争鸣), Xu Wei-Wei (许伟伟), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2013, 22(4): 040701.
[2] Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths
Ma Xiao-Hua(马晓华), Pan Cai-Yuan(潘才渊), Yang Li-Yuan(杨丽媛), Yu Hui-You(于惠游), Yang Ling(杨凌), Quan Si(全思), Wang Hao(王昊), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃). Chin. Phys. B, 2011, 20(2): 027304.
[3] A CAD oriented quasi-analytical large-signal drain current model for 4H-SiC MESFETs
Cao Quan-Jun(曹全君), Zhang Yi-Men(张义门), Zhang Yu-Ming(张玉明), Lü Hong-Liana(吕红亮), Wang Yue-Hu(王悦湖), Chang Yuan-Cheng(常远程), and Tang Xiao-Yan(汤晓燕). Chin. Phys. B, 2007, 16(4): 1097-1100.
No Suggested Reading articles found!