Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096801    DOI: 10.1088/1674-1056/25/9/096801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures

Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀)
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  

The structure of InP-based InxGa1-xAs/In0.52Al0.48As pseudomorphic high electron mobility transistor (PHEMT) was optimized in detail. Effects of growth temperature, growth interruption time, Siδ-doping condition, channel thickness and In content, and inserted AlAs monolayer (ML) on the two-dimensional electron gas (2DEG) performance were investigated carefully. It was found that the use of the inserted AlAs monolayer has an enhancement effect on the mobility due to the reduction of interface roughness and the suppression of Si movement. With optimization of the growth parameters, the structures composed of a 10 nm thick In0.75Ga0.25As channel layer and a 3 nm thick AlAs/In0.52Al0.48As superlattices spacer layer exhibited electron mobilities as high as 12500 cm2·V-1·s-1 (300 K) and 53500 cm2·V-1·s-1 (77 K) and the corresponding sheet carrier concentrations (Ns) of 2.8×1012 cm-2 and 2.9×1012 cm-2, respectively. To the best of the authors' knowledge, this is the highest reported room temperature mobility for InP-based HEMTs with a spacer of 3 nm to date.

Keywords:  high electron mobility transistor      two-dimensional electron gas      InP  
Received:  11 January 2016      Revised:  09 May 2016      Accepted manuscript online: 
PACS:  68.35.bg (Semiconductors)  
  68.35.Ct (Interface structure and roughness)  
  61.66.Dk (Alloys )  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61434006).

Corresponding Authors:  Ming Qi     E-mail:  mqi@mail.sim.ac.cn

Cite this article: 

Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀) Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures 2016 Chin. Phys. B 25 096801

[1] Leong K M K H, Mei X, Yoshida W, Liu P H, Zhou Z, Lange M, Lee L S, Padilla J G, Zamora A, Gorospe B S, Nguyen K and Deal W R 2015 IEEE Microwave and Wireless Components Letters 25 397
[2] Mei X, Yoshida W, Lange M, Lee J, Zhou J, Liu P H, Leong K, Zamora A, Padilla J, Sarkozy S, Lai R and Deal W R 2015 IEEE Electron Device Lett. 36 327
[3] Tessmann A, Leuther A, Massler H, Hurm V, Kuri M, Zink M, Riessle M, Stulz H P, Schlechtweg M and Ambacher O 2014 IEEE Int. Microw. Symp. Dig. pp. 1-3
[4] Deal W R, Leong K, Zamora A, Radisic V and Mei X B 2014 IEEE Int. Microw. Symp. Dig. pp. 1-3
[5] Li H O, Huang W, Tang C W, Deng X F and Lau K M 2011 Chin. Phys. B 20 068502
[6] Huang J, Guo T Y, Zhang H Y, Xu J B, Fu X J, Yang H and Niu J B 2010 Chin. Phys. Lett. 27 118502
[7] Radisic V, Leong K, Mei X, Sarkozy S, Yoshida W and Deal W R 2012 IEEE Trans. Microw. Theory Tech. 60 724
[8] Fedoryshyn Y, Ostinelli O, Alt A, Pallin A and Bolognesi C R 2014 J. Appl. Phys. 115 043718
[9] Unuma T, Yoshida M, Noda T, Sakaki H and Akiyama H 2003 J. Appl. Phys. 93 1586
[10] Lee W and Fonstad C G 1986 J. Vac. Sci. Technol. B 4 536
[11] Sexl M, Boehm G, Xu D, Heiss H, Kraus S, Traenkle G and Weimann G 1997 J. Cryst. Growth 175 915
[12] Fedoryshyn Y, Ma P, Faist J, Kaspar P, Kappeler R, Beck M, Holzman J F and Jackel H 2012 IEEE J. Quantum Electron. 48 885
[13] Lee E Y, Bhargava S, Chin M A, Narayanamurti V, Pond K J and Luo K 1996 Appl. Phys. Lett. 69 940
[14] Devine R L S 1988 Semicond. Sci. Technol. 3 1171
[15] Zhou S X, Qi M, Ai L K, Xu A H, Wang L D, Ding P and Jin Z 2015 Chin. Phys. Lett. 32 097101
[16] Pan N, Carter J, Jackson G S, Hendriks H, Zheng X L and Kim M H 1991 Appl. Phys. Lett. 59 458
[17] Brown A S, Metzger R A, Henige J A, Nguyen L, Lui M and Wilson R G 1991 Appl. Phys. Lett. 59 3610
[18] Sagisaka H, Kitada T, Shimomura S, Hiyamizu S, Watanabe I, Matsui T and Mimura T 2006 J. Vac. Sci. Technol. B 24 2668
[1] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[2] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[3] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[6] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[7] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[8] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[9] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[10] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[11] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[12] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[13] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[14] A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏). Chin. Phys. B, 2021, 30(12): 120701.
[15] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
No Suggested Reading articles found!