Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020504    DOI: 10.1088/1674-1056/24/2/020504
GENERAL Prev   Next  

Antagonistic formation motion of cooperative agents

Lu Wan-Ting (卢婉婷), Dai Ming-Xiang (代明香), Xue Fang-Zheng (薛方正)
School of Automation, Chongqing University, Chongqing 400044, China
Abstract  This paper investigates a new formation motion problem of a class of first-order multi-agent systems with antagonistic interactions. A distributed formation control algorithm is proposed for each agent to realize the antagonistic formation motion. A sufficient condition is derived to ensure that all of the agents make an antagonistic formation motion in a distributed manner. It is shown that all of the agents can be spontaneously divided into several groups and that agents in the same group collaborate while agents in different groups compete. Finally, a numerical simulation is included to demonstrate our theoretical results.
Keywords:  formation motion      first-order dynamics      antagonistic interactions  
Received:  24 March 2014      Revised:  04 September 2014      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  02.10.Yn (Matrix theory)  
  87.10.-e (General theory and mathematical aspects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203080 and 61473051) and the Natural Science Foundation of Chongqing City (Grant No. CSTC 2011BB0081).
Corresponding Authors:  Xue Fang-Zheng     E-mail:  xuefangzheng@cqu.edu.cn

Cite this article: 

Lu Wan-Ting (卢婉婷), Dai Ming-Xiang (代明香), Xue Fang-Zheng (薛方正) Antagonistic formation motion of cooperative agents 2015 Chin. Phys. B 24 020504

[1] Lin P, Qin K Y, Li Z K and Ren W 2011 Systems and Control Letters 60 365
[2] Lin P, Jia Y M, Du J P and Yu S Y 2007 Proceedings of the 26th Chinese Control Conference, July 26-31, 2007, Hunan, China, p. 577
[3] Lin P and Jia Y M 2010 IEEE Trans. Autom. Control 55 778
[4] Tang Z J, Huang T Z, Shao J Z and Hu J P 2012 Neurocomputing 97 410
[5] Lin P and Jia Y M 2011 Automatica 47 848
[6] Wu Z H, Peng L, Xie L B and Wen J W 2013 Chin. Phys. B 22 128901
[7] Li L and Fang H J 2013 Chin. Phys. B 22 110505
[8] Zhang W G, Zeng D L and Guo Z K 2010 Chin. Phys. B 19 070518
[9] Sun F L and Zhu W 2013 Chin. Phys. B 22 110204
[10] Lin Z Q and Ye G X 2013 Chin. Phys. B 22 058201
[11] Xue F Z, Hou Z C and Li X M 2013 Neurocomputing 122 324
[12] Lin P and Jia Y M 2009 Automatica 45 2154
[13] Lin P and Ren W 2014 IEEE Trans. Autom. Control 59 775
[14] Lin P, Jia Y M and Li L 2008 Systems and Control Letters 57 643
[15] Cullen J M, Shaw E and Baldwin H A 1965 Animal Behaviour 13 524
[16] Couzin I D, Krause J, Franks N R and Levin S A 2005 Nature 433 513
[17] Lin P and Jia Y M 2008 Physica A 387 303
[18] Hu J P, Xiao Z H, Zhou Y L and Yu J Y 2013 Proceedings of the 32nd Chinese Control Conference, July 26-28, 2013, Xi'an, China, p. 6879
[19] Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 373
[20] Hu J P and Yuan H W 2009 Chin. Phys. B 18 3777
[21] Zhang W G, Liu J Z, Zeng D L and Hu Y 2013 Chin. Phys. B 22 050511
[22] Li Y M and Guan X P 2009 Chin. Phys. B 18 3355
[23] Lin P and Jia Y 2010 Systems and Control Letters 59 587
[24] Li H, Bi L, Wang R, Li L J, Lin Z L and Zhang C X 2013 J. Lightw. Technol. 31 12
[25] Altafini C 2013 IEEE Trans. Autom. Control 58 935
[26] Li H, Cui L Y, Lin Z L, Li L J and Zhang C X 2014 J. Lightw. Technol. 32 5
[27] Tian Y P and Liu C L 2008 IEEE Trans. Autom. Control 53 2122
[28] Godsil C and Royle G 2001 Algebraic Graph Theory (New York: Springer-Verlag)
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[3] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[4] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[5] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[6] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[7] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[8] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[9] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
[10] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[11] A new heuristics model of simulating pedestrian dynamics based on Voronoi diagram
Xin-Sen Wu(武鑫森), Hao Yue(岳昊), Qiu-Mei Liu(刘秋梅), Xu Zhang(张旭), and Chun-Fu Shao(邵春福). Chin. Phys. B, 2021, 30(1): 018902.
[12] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[13] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
[14] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[15] Quasi-periodic events on structured earthquake models
Bin-Quan Li(李斌全), Zhi-Xi Wu(吴枝喜), Sheng-Jun Wang(王圣军). Chin. Phys. B, 2019, 28(9): 090503.
No Suggested Reading articles found!