Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020503    DOI: 10.1088/1674-1056/24/2/020503
GENERAL Prev   Next  

Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary

Tan Zhi-Zhong (谭志中)
Department of Physics, Nantong University, Nantong 226019, China
Abstract  We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary, which has not been solved before because the Green's function technique and the Laplacian matrix approach are invalid in this case. Looking for the exact solutions of resistance is important but difficult in the case of the arbitrary boundary since the boundary is a wall or trap which affects the behavior of a finite network. In this paper, we give a general resistance formula that is composed of a single summation by using the recursion-transform method. Meanwhile, several interesting results are derived by the general formula. Further, the current distribution is given explicitly as a byproduct of the method.
Keywords:  exact solution      resistor network      matrix equation      recursion-transform      boundary conditions  
Received:  14 November 2014      Revised:  28 November 2014      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  84.30.Bv (Circuit theory)  
  01.55.+b (General physics)  
  02.10.Yn (Matrix theory)  
Corresponding Authors:  Tan Zhi-Zhong     E-mail:  tanz@ntu.edu.cn,tanzzh@163.com

Cite this article: 

Tan Zhi-Zhong (谭志中) Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary 2015 Chin. Phys. B 24 020503

[1] Kirchhoff G 1847 Ann. Phys. Chem. 148 497
[2] Kirkpatrick S 1973 Rev. Mod. Phys. 45 574
[3] Cserti J 2000 Am. J. Phys. 68 896
[4] Wu F Y 2004 J. Phys. A: Math. Gen. 37 6653
[5] Tzeng W J and Wu F Y 2006 J. Phys. A: Math. Gen. 39 8579
[6] Essam J W and Wu F Y 2009 J. Phys. A: Math. Theor. 42 025205
[7] Izmailian N Sh and Huang M C 2010 Phys. Rev. E 82 011125
[8] Izmailian N Sh, Kenna R and Wu F Y 2014 J. Phys. A: Math. Theor. 47 035003
[9] Tan Z Z 2011 Resistance Network Model (Xi'an: Xidian University Press) pp. 6-216
[10] Tan Z Z, Zhou L and Yang J H 2013 J. Phys. A: Math. Theor. 46 195202
[11] Tan Z Z, Essam J W and Wu F Y 2014 Phys. Rev. E 90 012130
[12] Essam J W, Tan Z Z and Wu F Y 2014 Phys. Rev. E 90 032130
[13] Tan Z Z 2014 Commun. Theor. Phys. 63 36
[14] Giordano S 2005 Int. J. Circ. Theor. Appl. 33 519
[15] Izmailian N Sh and Hu C K 2007 Phys. Rev. E 76 041118
[16] Keating J P, Linden N, Matthews J C F and Winter A 2007 Phys. Rev. A 76 012315
[17] Izmailian N Sh and Hu C K S 2002 Phys. Rev. E 65 036103
[18] Sandvik and Anders W 2012 Phys. Rev. B 85 134407
[19] Carl P Goodrich, Andrea J Liu and Sidney R Nagel 2012 Phys. Rev. Lett. 109 095704
[20] Lu W T and Wu F Y 2001 Phys. Rev. E 63 026107
[1] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[2] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[3] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[4] Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions
Yang Shi(师阳), Ni Li(李妮), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(10): 107503.
[5] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[6] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[7] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[8] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[9] Electromagnetically induced transparency at optical nanofiber-cesium vapor interface
Rui-Juan Liu(刘瑞娟), Dian-Qiang Su(苏殿强), Zi-Xuan Song(宋子旋), Zhong-Hua Ji(姬中华), Yan-Ting Zhao(赵延霆). Chin. Phys. B, 2019, 28(12): 124201.
[10] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[11] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[12] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[13] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[14] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[15] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
No Suggested Reading articles found!