Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120507    DOI: 10.1088/1674-1056/abfb5b
GENERAL Prev   Next  

Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies

Xiao-Yu Shen(沈小宇)1, Shuai Su(宿帅)2,3,†, and Hai-Liang Hou(侯海良)1
1 School of Automation, Central South University, Changsha 410083, China;
2 National Engineering Research Center of Rail Transportation Operation and Control System, Beijing Jiaotong University, Beijing 100044, China;
3 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
Abstract  This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies. We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point, while their control inputs are constrained in their own nonconvex region. It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term. Based on the dynamic transformation technique, the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term. By utilizing the nonnegative matrix theory, it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected. Finally, a numerical simulation example is used to demonstrate the acquired theoretical results.
Keywords:  multiagent systems      nonconvex input constraints      switching topologies      distributed optimization  
Received:  25 February 2021      Revised:  02 April 2021      Accepted manuscript online:  26 April 2021
PACS:  05.65.+b (Self-organized systems)  
  02.10.Yn (Matrix theory)  
  87.10.-e (General theory and mathematical aspects)  
Fund: Project supported by the National Engineering Research Center of Rail Transportation Operation and Control System, Beijing Jiaotong University (Grant No. NERC2019K002).
Corresponding Authors:  Shuai Su     E-mail:  shuaisu123@163.com

Cite this article: 

Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良) Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies 2021 Chin. Phys. B 30 120507

[1] Nedić A and Ozdaglar A 2009 IEEE Trans. Autom. Control 54 48
[2] Nedić A and Olshevsky A 2015 IEEE Trans. Autom. Control 60 601
[3] Kia S S and Cortés J 2015 Automatica 55 254
[4] Gharesifard B and Cortés J 2014 IEEE Trans. Autom. Control 59 781
[5] Nedić A, Ozdaglar A and Parrilo A P 2010 IEEE Trans. Autom. Control 55 922
[6] Srivastava K and Nedić A 2011 IEEE J. Sel. Top. Signal Process 5 772
[7] Shi G, Johansson K H and Hong Y 2013 IEEE Trans. Autom. Control 58 610
[8] Qiu Z, Liu S and Xie L 2016 Automatica 68 209
[9] Wang J and Elia N 2011 Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, December 12-15, 2011, Orlando, FL, USA, p. 3800
[10] Kvaternik K and Pavel L 2012 Proceedings of the 51st IEEE Conference on Decision and Control, December 10-13, 2012, Maui, HI, USA, p. 6801
[11] Liu C, Li H and Shi Y 2018 Automatica 114 108834
[12] Lin P, Ren W and Gao H 2017 IEEE Trans. Autom. Control 62 5788
[13] Lin P, Ren W, Yang C H and Gui W H 2019 IEEE Trans. Autom. Control 64 2575
[14] Lin P, Ren W and Farrell J A 2017 IEEE Trans. Autom. Control 62 2239
[15] Chatzipanagiotis N and Zavlanos M M 2017 IEEE Trans. Autom. Control 62 4405
[16] Lin P, Ren W, Yang C H and Gui W H 2019 IEEE Trans. Autom. Control 64 5148
[17] Lin P, Xu J, Ren W, Yang C H and Gui W H 2021 IEEE Trans. Autom. Control 66 5569
[18] Zhu M H and Martínez S 2013 IEEE Trans. Autom. Control 58 1534
[19] Johansson B, Keviczky T, Johansson M, and Johansson K H 2008 Proceedings of IEEE Conference on Decision and Control, December 9-11, 2008, Cancun, Mexico, p. 4185
[20] Lu J and Tang Y C 2012 IEEE Trans. Autom. Control 57 2348
[21] Notarnicola I and Notarstefano G 2017 IEEE Trans. Autom. Control 62 2095
[22] Yi P, Hong Y and Liu F 2015 Systems & Control Lett 83 45
[23] Lei J, Chen H F and Fang H T 2016 Systems & Control Lett 96 110
[24] Lin P, Ren W and Song Y 2016 Automatica 65 120
[25] Zhang C X, Li H and Lin P 2008 Chin. Phys. B 17 4458
[26] Lin P, Lu W T and Song Y D 2013 Chin. Phys. B 23 040503
[27] Boyd S and Vandenberghe L 2004 Convex Optimization (Cambridge:Cambridge University Press)
[28] Facchinei F and Pang J 2003 Finite-Dimensional Variational Inequalities and Complementarity Problems (New York:Springer-Verlag)
[1] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[2] Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm
Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东). Chin. Phys. B, 2019, 28(3): 030501.
[3] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[4] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
No Suggested Reading articles found!