Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078901    DOI: 10.1088/1674-1056/ac43b3

Passenger management strategy and evacuation in subway station under Covid-19

Xiao-Xia Yang(杨晓霞)1,2, Hai-Long Jiang(蒋海龙)2, Yuan-Lei Kang(康元磊)3, Yi Yang(杨毅)2, Yong-Xing Li(李永行)4,†, and Chang Yu(蔚畅)2
1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China;
2 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China;
3 CRRC Qingdao Sifang CO., LTD., Qingdao 266111, China;
4 Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  Under the background of Covid-19 sweeping the world, safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus. Based on the social force model and the minimum cost model, the movement and path selection behavior of passengers in the subway station are modeled, and a strategy for passenger flow management to maintain a safe social distance is put forward. Take Qingdao Jinggangshan Road subway station of China as the simulation scene, the validity of the simulation model is verified by comparing the measured value and simulation value of the time required for passengers from getting off the train to the ticket gate. Simulation results indicate that controlling the time interval between incoming passengers at the entrance can effectively control the social distance between passengers and reduce the risk of epidemic infection. By comparing the evacuation process of passengers under different initial densities, it is found that the greater the initial density of passengers is, the longer the passengers are at risk social distance. In the process of passenger emergency evacuation, the stairs/escalators and ticket gates are bottleneck areas with high concentration of passenger density, which should be strictly disinfected many times on the basis of strictly checking the health code of incoming passengers and controlling the arrival time interval. The simulation results of this paper verify the harmfulness of passenger emergency evacuation without protective measures, and provide theoretical support for the operation and management of subway station under the epidemic situation.
Keywords:  COVID-19      social force model      subway station      evacuation  
Received:  25 October 2021      Revised:  08 December 2021      Accepted manuscript online:  16 December 2021
PACS:  89.40.-a (Transportation)  
  05.65.+b (Self-organized systems)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62003182).
Corresponding Authors:  Yong-Xing Li     E-mail:

Cite this article: 

Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅) Passenger management strategy and evacuation in subway station under Covid-19 2022 Chin. Phys. B 31 078901

[1] Alexandre N, Sebastián B and Marcelo N K 2017 Transp. Res. Part B-Methodol. 99 30
[2] Helbing D 1992 Complex Syst. 6 391
[3] Hughes R L 2003 Annu. Rev. Fluid Mech. 35 169
[4] Yang X X, Yang X L, Wang Q L, Kang Y L and Pan F Q 2020 Appl. Math. Comput. 365 124711
[5] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[6] Yang X X, Dong H R, Yao X M and Sun X B 2016 Chin. Phys. B 25 128901
[7] Wang W L, Wan F F and Lo S M 2020 Chin. Phys. B 29 084502
[8] Zhang T, Ren G, Yu Z G and Yang Y 2018 Chin. Phys. B 27 078901
[9] Yue F R, Chen J, Ma J, Song W G and Lo S M 2018 Chin. Phys. B 27 124501
[10] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[11] Tajima Y, Takimoto K and Nagatani T 2002 Physica A 313 709
[12] Sticco I M, Frank G A and Dorso C O 2021 Physica A 561 125299
[13] Yang X X, Dong H R, Yao X M and Sun X B 2016 Chin. Phys. B 25 048902
[14] Yang X X, Yang X L, Li Y X, Zhang J H and Kang Y L 2021 Physica A 583 126256
[15] Li J H, Chen M Y, Wu W H, Liu B L and Zheng X P 2021 Saf. Sci. 133 105027
[16] Sticco I M, Frank G A and Dorso C O 2020 Saf. Sci. 129 104829
[17] Ma Y, Lee W M, Shi M and Yuen K K 2018 Chin. Phys. B 27 038901
[18] Vermuyten H, Beliën J, De Boeck L, Reniers G and Wauters T 2016 Saf. Sci. 87 167
[19] Miguel A F 2013 Phys. Life Rev. 10 168
[20] Jin B W, Wang J H, Wang Y, Gu Y M and Wang Z R 2020 Saf. Sci. 127 104695
[21] Stubenschrott M, Kogler C, Matyus T and Seer S 2014 Transp. Res. Procedia 2 376
[22] Zhou R, Cui Y K, Wang Y and Jiang J C 2021 Tunn. Undergr. Space Technol. 110 103837
[23] Yang X X, Yang X L, Pan F Q, Kang Y L and Zhang J H 2021 Physica A 565 125566
[24] Lo S M, Huang C H, Wang P and Yuen K K 2006 Fire Saf. J. 41 364
[25] Xu X Y, Xie L P, Li H Y and Qin L Q 2017 Expert Syst. Appl. 95 324
[26] Yang X X, Yang X L and Wang Q L 2019 Commun. Nonlinear Sci. Numer. Simul. 83 105138
[27] Cao S C, Fu L B and Song W G 2018 Appl. Math. Comput. 332 136
[28] Yang X X, Zhang R, Pan F Q, Yang Y, Li Y X and Yang X L 2022 Physica A 594 127033
[29] Yang X X, Yang X L, Xue S Q, Zang J H, Pan F Q, Kang Y L and Wang Q L 2019 Appl. Math. Comput. 358 177
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[3] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[4] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[5] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
[6] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[7] Optimal control strategy for COVID-19 concerning both life and economy based on deep reinforcement learning
Wei Deng(邓为), Guoyuan Qi(齐国元), and Xinchen Yu(蔚昕晨). Chin. Phys. B, 2021, 30(12): 120203.
[8] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[9] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[10] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[11] Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation
Ya-Ping Ma(马亚萍), Hui Zhang(张辉). Chin. Phys. B, 2020, 29(3): 038901.
[12] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[13] Evacuation simulation considering action of guard in artificial attack
Chang-Kun Chen(陈长坤), Yun-He Tong(童蕴贺). Chin. Phys. B, 2019, 28(1): 010503.
[14] Effect of exit location on flow of mice under emergency condition
Teng Zhang(张腾), Shen-Shi Huang(黄申石), Xue-Lin Zhang(张学林), Shou-Xiang Lu(陆守香), Chang-Hai Li(黎昌海). Chin. Phys. B, 2019, 28(1): 010505.
[15] Evacuation flow of pedestrians considering compassion effect
Yu-Zhang Chen(陈煜章), Ming Li(李明), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2018, 27(8): 088901.
No Suggested Reading articles found!