Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034501    DOI: 10.1088/1674-1056/ab6c44
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation-based optimization of inner layout of a theater considering the effect of pedestrians

Qing-Fei Gao(高庆飞)1,4, Yi-Zhou Tao(陶亦舟)2, Yan-Fang Wei(韦艳芳)3, Cheng Wu(吴成)1,4, Li-Yun Dong(董力耘)1,4
1 Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China;
2 College of Science, Shanghai Institute of Technology, Shanghai 201418, China;
3 College of Physical Science and Technology, Yulin Normal University, Yulin 537000, China;
4 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
Abstract  We propose an extended cellular automaton model based on the floor field. The floor field can be changed accordingly in the presence of pedestrians. Furthermore, the effects of pedestrians with different speeds are distinguished, i.e., still pedestrians result in more increment of the floor field than moving ones. The improved floor field reflects impact of pedestrians as movable obstacles on evacuation process. The presented model was calibrated by comparing with previous studies. It is shown that this model provides a better description of crowd evacuation both qualitatively and quantitatively. Then we investigated crowd evacuation from a middle-size theater. Four possible designs of aisles in the theater are studied and one of them is the actual design in reality. Numerical simulation shows that the actual design of the theater is reasonable. Then we optimize the position of the side exit in order to reduce the evacuation time. It is shown that the utilization of the two exits at bottom is less than that of the side exits. When the position of the side exit is shifted upwards by about 1.6 m, it is found that the evacuation time reaches its minimum.
Keywords:  cellular automaton      floor field      crowd evacuation      optimization of pedestrian facilities  
Received:  16 October 2019      Revised:  26 December 2019      Accepted manuscript online: 
PACS:  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  05.65.+b (Self-organized systems)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572184 and 11562020), the National Basic Research Program of China (Grant No. 2012CB725404), and the Research Foundation of Shanghai Institute of Technology (Grant No. 39120K196008-A06).
Corresponding Authors:  Li-Yun Dong     E-mail:  dly@shu.edu.cn

Cite this article: 

Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘) Simulation-based optimization of inner layout of a theater considering the effect of pedestrians 2020 Chin. Phys. B 29 034501

[1] Helbing D 2005 Transp. Sci. 39 1
[2] Li Y, Chen M Y, Dou Z, Zheng X P, Cheng Y and Mebarki A 2019 Physica A 526 120752
[3] Helbing D and Molnár P 1995 Phys. Rev. E 51 4282
[4] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[5] Blue V J and Adler J L 2001 Transp. Res. Part. B 35 293
[6] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[7] Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Muñoza V and Valdiviaa J A 2007 Physica A 382 631
[8] Huang H J and Guo R Y 2008 Phys. Rev. E 78 021131
[9] Kirchner A, Nishinari K and Schadschneider A 2003 Phys. Rev. E 67 056122
[10] Kirchner A and Schadschneider A 2002 Physica A 312 260
[11] Guo R Y and Huang H J 2008 J. Phys. A: Math. Theor. 41 385104
[12] Zheng Y, Jia B, Li X G and Zhu N 2011 Physica A 390 3147
[13] Ji L Q, Qian Y S, Zeng J W, Wang M, Xu D J, Yan Y and Feng S 2013 J. Appl. Math. 2013 284721
[14] Yang X, Wang B X and Zheng Q 2015 Math. Probl. Eng. 2015 820306
[15] Zhu K J and Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese)
[16] Xie J J and Xue Y 2012 Acta Phys. Sin. 61 194502 (in Chinese)
[17] Wang H N, Chen D, Pan W, Xue Y and He H D 2014 Chin. Phys. B 23 080505
[18] Von Schantz A and Ehtamo H 2015 Phys. Rev. E 92 052805
[19] Guan J B, Wang K H and Chen F Y 2016 Physica A 461 655
[20] Chen Y Z, Li M, Jiang R and Hu M B 2018 Chin. Phys. B 27 088901
[21] Tian H H, Wei Y F, Dong L Y, Xue Y and Zheng R S 2018 Physica A 503 991
[22] Yang L Z, Liu S B, Li J and Zhu K J 2009 Int. J. Mod. Phys. C 20 1583
[23] Chen L, Guo R Y and Ta N 2013 Acta Phys. Sin. 62 050506 (in Chinese)
[24] Dong L Y, Chen L and Duan X Y 2015 Acta Phys. Sin. 64 0220505 (in Chinese)
[25] Guo N, Jiang R, Hu M B and Ding J X 2017 Chin. Phys. B 26 120506
[26] Hu J, You L, Zhang H, Wei J and Guo Y Y 2018 Physica A 489 112
[27] Yue H, Hao H R, Chen X M and Shao C F 2007 Physica A 384 567
[28] Zhu N, Jia B, Shao C F and Yue H 2012 Chin. Phys. B 21 050501
[29] Yue H, Zhang X, Chen G and Shao C F 2012 Acta Phys. Sin. 61 130509 (in Chinese)
[30] Yue H, Zhang R Y, Shao C F and Xing Y 2014 Chin. Phys. B 23 050512
[31] Tian H H, Dong L Y and Xue Y 2015 Physica A 420 164
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[5] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[6] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[7] Evacuation simulation considering action of guard in artificial attack
Chang-Kun Chen(陈长坤), Yun-He Tong(童蕴贺). Chin. Phys. B, 2019, 28(1): 010503.
[8] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[9] Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition
Yi Ma(马毅), Eric Wai Ming Lee(李伟民), Meng Shi(施朦), Richard Kwok Kit Yuen(袁国杰). Chin. Phys. B, 2018, 27(3): 038901.
[10] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[11] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[12] Discrete element crowd model for pedestrian evacuation through an exit
Peng Lin(林鹏), Jian Ma(马剑), Siuming Lo(卢兆明). Chin. Phys. B, 2016, 25(3): 034501.
[13] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[14] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[15] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
No Suggested Reading articles found!