Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018902    DOI: 10.1088/1674-1056/abb3f5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new heuristics model of simulating pedestrian dynamics based on Voronoi diagram

Xin-Sen Wu(武鑫森)1, Hao Yue(岳昊)1,†, Qiu-Mei Liu(刘秋梅)1, Xu Zhang(张旭)2 , and Chun-Fu Shao(邵春福)1
1 Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China; 2 College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China
Abstract  A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the non-crowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadlock, and site-fine-tuning are considered. The preference demand describes the willingness determination of detouring or following other pedestrians. In the evading and surpassing mechanisms, in order to achieve a balance between avoiding conflicts and minimizing detour distances, a new pair of concepts: "allow-areas and denial-areas" are introduced to divide the feasible region for pedestrians detour behaviors, in which the direction and magnitude of detour velocity are determined. A microscopic anti-deadlock mechanism is inserted to avoid deadlock problem of the counter-directional pedestrian. A site-fine-tuning mechanism is introduced to describe the behavior of avoiding getting too close to the neighbors in pedestrian movement. The presented model is verified through multiple scenarios, including the uni-or bi-direction pedestrian flow in the corridor without obstacles, the uni-direction pedestrian flow in the corridor with obstacles, and the pedestrian evacuation from a room with single-exit. The simulation results show that the velocity-density relationship is consistent with empirical data. Some self-organizing phenomena, such as lanes formation and arching are observed in the simulation. When pedestrians detour an obstacle, the avoiding area before the obstacle and the unoccupied area after the obstacle can be observed. When pedestrians evacuate through a bottleneck without panic, the fan-shaped crowd can be found, which is consistent with the actual observation. It is also found that the behavior of following others in an orderly manner is more conducive to the improvement of the overall movement efficiency when the crowd moves in a limited space.
Keywords:  pedestrian dynamics      pedestrian simulation      heuristics rules      Voronoi diagram  
Received:  12 July 2020      Revised:  24 August 2020      Accepted manuscript online:  01 September 2020
PACS:  89.40.-a (Transportation)  
  05.65.+b (Self-organized systems)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 71771013 and 71621001), in part by the National Key Research and Development Program of China (Grant No. 2019YFF0301403), in part by the Singapore Ministry of Education (MOE) AcRF Tier 2 (Grant No. MOE2016-T2-1-044), and in part by the Fundamental Research Funds for the Central Universities, China (Grant NO. 2019JBM041).
Corresponding Authors:  Corresponding author. E-mail: hyue@bjtu.edu.cn   

Cite this article: 

Xin-Sen Wu(武鑫森), Hao Yue(岳昊), Qiu-Mei Liu(刘秋梅), Xu Zhang(张旭), and Chun-Fu Shao(邵春福) A new heuristics model of simulating pedestrian dynamics based on Voronoi diagram 2021 Chin. Phys. B 30 018902

1 Yang L, Rao P, Zhu K, Liu S and Zhan X 2012 Saf. Sci. 50 1173
2 Shiwakoti N and Sarvi M 2013 Transp. Res. Part C 37 260
3 Guo R Y, Huang H J and Wong S C 2011 Transp. Res. Part B 45 490
4 Johansson A, Batty M, Hayashi K, Al B O, Marcozzi D and Memish Z A 2012 Lancet Infect. Dis. 12 150
5 Shiwakoti N, Tay R, Stasinopoulos P and Woolley P J 2017 Saf. Sci. 91 40
6 Duives D C, Daamen W and Hoogendoorn S P 2013 Transp. Res. Part C 37 193
7 Zheng X, Zhong T and Liu M 2009 Build. Environ. 44 437
8 Xiao Y, Gao Z Y, Qu Y C and Li X G 2016 Transp. Res. Part C 68 566
9 Blue V and Adler J 2000 Transp. Res. Record 1710 20
10 Yanagisawa D, Nishi R, Tomoeda A, Ohtsuka K, Kimura A, Suma Y and Nishinari K 2011 Sice Jcmsi. 3 395
11 Zhu K, Yang Y and Shi Q 2016 Simul. Model. Pract. Theory 69 31
12 Yue F R, Chen J, Ma J, Song W G and Lu X M 2018 Chin. Phys. B. 27 124501
13 Lu L L, Ren G, Wang W and Wang Y 2014 Chin. Phys. B 23 088901
14 Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
15 Liu S, Yang L, Fang T and Li J 2009 Physica A 388 1921
16 Li M H, Yuan Z Z, Xu Y and Tian J F 2015 Acta Phys. Sin. 64 018903 (in Chinese)
17 Yue H, Zhang B Y, Shao C F and Xing Y 2014 Chin. Phys. B 23 050512
18 Yue H, Wang S, Jia X L, Li J and Shao C F 2016 Simul.-Trans. Soc. Model. Simul. Int. 92 491
19 Zhang L, Yue H, Li M, Wang S and Mi X Y 2015 Acta Phys. Sin. 64 060505 (in Chinese)
20 Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
21 Helbing D, Buzna L, Johansson A and Werner T 2005 Transp. Sci. 39 1
22 Lakoba T I, Kaup D J and Finkelstein N M 2005 Simul. Trans. Soc. Model. Simul. Int. 81 339
23 Yang X X, Dong H R, Wang Q L, Chen Y and Hu X M 2014 Physica A 411 63
24 Hou L, Liu J G, Pan X and Wang B H 2014 Physica A 400 93
25 Seer S, Rudloff C, Matyus T and Brändle N 2014 Conference on Pedestrian and Evacuation Dynamics (PED), October 22-24, 2014, Delft, Netherlands
26 Seer S, Brändle N and Ratti C 2014 Transp. Res. Part C 48 212
27 Kretz T 2015 Physica A 438 272
28 Yang X X, Dong H R, Yao X M and Sun X B 2016 Chin. Phys. B 25 128901
29 Wang L, Zheng J H, Zhang X S, Zhang J L, Wang Q Z and Zhang Q 2016 Chin. Phys. B 25 118901
30 Parisi D R, Gilman M and Moldovan H 2009 Physica A 388 3600
31 Frank G A and Dorso C O 2011 Physica A 390 2135
32 Zhao Y X, Li M F, Lu X, Tian L J, Yu Z Y, Huang K, Wang Y N and Li T 2017 Physica A 465 175
33 Rudloff C, Matyus T, Seer S and Bauer D 2011 Transp. Res. Record 2264 101
34 Moussa\"íd M, Helbing D, Garnier S, Johansson A, Combe M and Theraulaz G 2009 Proc. R. Soc. B, Biol. Sci. 276 2755
35 Lv W, Song W G, Ma J and Fang Z M 2013 IEEE Trans. Intell. Transp. Syst. 14 1753
36 Jia X L, Yue H, Tian X and Yin H H 2017 Simul. Trans. Soc. Model. Simul. Int. 93 1013
37 Moussa\"íd M, Helbing D and Theraulaz G 2011 Proc. Natl. Acad. Sci. USA 108 6884
38 Degond P, Appert-Rolland C, Moussa\"íd M, Pettre J and Theraulaz G 2013 J. Stat. Phys. 152 1033
39 Guo R Y 2014 Physica A 415 428
40 Guo W, Wang X L and Zheng X P 2015 Physica A 432 87
41 Guy S J, Curtis S, Lin M C and Manocha D 2012 Phys. Rev. E 85 016110
42 Qu Y C, Xiao Y, Wu J J, Tang T and Gao Z Y 2018 Physica A 492 1153
43 Seyfried A, Steffen B and Lippert T 2006 Physica A 368 232
44 Li S S, Qian D L and Wang J Z 2012 J. Jilin Univ., Eng. Technol. Ed. 42 623
45 Qu Y C, Gao Z Y, Orenstein P, Long J C and Li X G 2015 Transportmetrica B-Transp. Dyn. 3 1
46 Marjorie D 1993 Science 260 1170
47 Fruin J J1971 Pedestrian and Planning Design (New York: Metropolitan Association of Urban Designer and Environmental Planners Inc.)
48 Older S J Traff. Eng. Contr. 10 160
49 M\=ori M and Tsukaguchi H 1987 Transp. Res. Part A 21 223
50 Zhang J, Klingsch W, Schadschneider A and Seyfried A 2011 J. Stat. Mech. -Theory Exp. 6 P06004
51 Weidmann U 1993 Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung) (Zurich: ETH, IVT)
52 Hankin B D and Wright R A 1958 Oper. Res. Q. 9 81
53 Hoogendoorn S P and Daamen W 2005 Transp. Sci. 39 147
54 Liao W C, Seyfried A, Zhang J, Boltes M, Zheng X P and Zhao Y 2014 Conference on Pedestrian and Evacuation Dynamics (PED), October 22-24, 2014, Delft, Netherlands
[1] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
[2] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[3] A new collision avoidance model for pedestrian dynamics
Wang Qian-Ling (王千龄), Chen Yao (陈姚), Dong Hai-Rong (董海荣), Zhou Min (周敏), Ning Bin (宁滨). Chin. Phys. B, 2015, 24(3): 038901.
[4] Multi-grid simulation of pedestrian counter flow with topological interaction
Ma Jian(马剑), Song Wei-Guo(宋卫国), and Liao Guang-Xuan(廖光煊). Chin. Phys. B, 2010, 19(12): 128901.
No Suggested Reading articles found!