Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127702    DOI: 10.1088/1674-1056/24/12/127702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the relaxor ferroelectricity of Ba(Zr, Ti)O3

Yang Li-Juan (杨丽娟)a b, Wu Ling-Zhi (武灵芝)c, Dong Shuai (董帅)b
a School of Information Science and Technology, Suqian College, Suqian 223800, China;
b Department of Physics, Southeast University, Nanjing 211189, China;
c School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
Abstract  Ba(Zr, Ti)O3 is a lead-free relaxor ferroelectric. Using the first-principles method, the ferroelectric dipole moments for pure BaTiO3 and Ba(Zr, Ti)O3 supercells are studied. All possible ion configurations of BaZr0.5Ti0.5O3 and BaZr0.25Ti0.75O3 are constructed in a 2× 2× 2 supercell. For the half-substituted case, divergence of ferroelectric properties is found from these structures, which greatly depends on the arrangements of Ti and Zr ions. Thus our results provide a reasonable explanation to the relaxor behavior of Ba(Zr, Ti)O3. In addition, a model based on the thermal statistics gives the averaged polarization for Ba(Zr, Ti)O3, which depends on the temperature of synthesis. Our result is helpful to understand and tune the relaxor ferroelectricity of lead-free Ba(Zr, Ti)O3.
Keywords:  relaxor      ferroelectric      Ba(Zr,Ti)O3  
Received:  22 August 2015      Revised:  28 September 2015      Accepted manuscript online: 
PACS:  77.22.Ej (Polarization and depolarization)  
  77.55.fe (BaTiO3-based films)  
  77.80.Jk (Relaxor ferroelectrics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322206 and 11274060) and the Natural Science Foundation of Jiangsu Province, China (Grant No. 15KJB140009).
Corresponding Authors:  Dong Shuai     E-mail:  sdong@seu.edu.cn

Cite this article: 

Yang Li-Juan (杨丽娟), Wu Ling-Zhi (武灵芝), Dong Shuai (董帅) First-principles study of the relaxor ferroelectricity of Ba(Zr, Ti)O3 2015 Chin. Phys. B 24 127702

[1] Dagotto E 2005 Science 309 257
[2] Weber U, Greuel G, Boettger U, Weber S, Hennings D and Waser R 2001 J. Am. Ceram. Soc. 84 759
[3] Kohlstedt H, Mustafa Y, Gerber A, Petraru A, Fitsilis M, Meyer R, Böttger U and Waser R 2005 Microelectron. Eng. 80 296
[4] Norga G J, Fe L, Wouters D J and Maes H E 2000 Appl. Phys. Lett. 76 1318
[5] Maiti T, Guo R and Bhalla A S 2011 Ferroelectrics 425 4
[6] Maiti T, Guo R and Bhalla A S 2008 J. Am. Ceram. Soc. 91 1769
[7] Reymond V, Bidault O, Michau D, Maglione M and Payan S 2006 J. Phys. D: Appl. Phys. 39 1204
[8] Maiti T, Guo R and Bhalla A S 2007 J. Phys. D: Appl. Phys. 40 4355
[9] Dixit A, Majumder S B, Katiyar R S and Bhalla A S 2006 J. Mater. Sci. 41 87
[10] Zhai J, Yao X, Shen J, Zhang L and Chen H 2004 J. Phys. D: Appl. Phys. 37 748
[11] Jin W K, Tsuyoshi O, Masashi M, Takeshi T, Masamichi N, Hiroshi F, Hiromi S, Ken N and Takashi Y 2012 Jpn. J. Appl. Phys. 51 09LA01
[12] Maiwa H 2007 Jpn. J. Appl. Phys. 46 7013
[13] Cohen R E and Krakuer H 1990 Phy. Rev. B 42 6416
[14] Cohen R E and Krakuer H 1992 Ferroelectrics 136 65
[15] Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
[16] Li M L, Gu Y J, Chen L Q and Duan W H 2014 Phys. Rev. B 90 054106
[17] Bagayoko D, Zhao G L, Fan J D and Wang J T 1998 J. Phys.: Condens. Matter 10 5645
[18] Smolenskii G A, Isupov V A and Agranovskaya A I 1961 Sov. Phys.-Solid State 3 51
[19] Newham R E, Wolfe R W, Horsey R S, Diaz-Colon F A and Kay M I 1973 Mater. Res. Bull. 8 1183
[20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Perdew J P, Ruzsinszky A, Csoka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L and Burke K 2008 Phys. Rev. Lett. 100 136406
[23] Perdew P, Burke K and Frnzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[27] Resta R 1994 Rev. Mod. Phys. 66 899
[28] Cheng H F 1996 J. Appl. Phys. 79 7965
[29] King-Smith R D and Vanderbilt D 1994 Phys. Rev. B 49 5828
[30] Lv X, Wang N and Chen X M 2014 Chin. Phys. Lett. 31 077701
[31] Qu S H and Cao W Q 2014 Acta Phys. Sin. 63 047701 (in Chinese)
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[4] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[5] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[6] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[10] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[11] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[12] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[13] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[14] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[15] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
No Suggested Reading articles found!