Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127301    DOI: 10.1088/1674-1056/24/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-valley quantum Hall phases in graphene

Tian Hong-Yu (田宏玉)
Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential Δ into account but without spin-orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and Δ . When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e2/2h or 3e2/2h. The possibility of tuning different quantum Hall states with M and Δ suggests possible graphene-based spintronics and valleytronics applications.
Keywords:  quantum Hall phases      graphene      magnetic field      metallic boundary states  
Received:  26 June 2015      Revised:  06 August 2015      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  73.22.Pr (Electronic structure of graphene)  
  73.43.Nq (Quantum phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447218, 11274059, 11404278, and 11447216).
Corresponding Authors:  Tian Hong-Yu     E-mail:  tianhy2010@163.com

Cite this article: 

Tian Hong-Yu (田宏玉) Spin-valley quantum Hall phases in graphene 2015 Chin. Phys. B 24 127301

[1] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[2] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[3] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[4] Peres N M R, Guinea F and Castro Neto A H 2006 Phys. Rev. B 73 125411
[5] Zhang Y, Jiang Z, Small J P, Purewal M S, Tan Y W, Fazlollahi M, Chudow J D, Jaszczak J A, Stormer H L and Kim P 2006 Phys. Rev. Lett. 96 136806
[6] Jiang Z, Zhang Y, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 106802
[7] Song Y J, Otte A F, Kuk Y, Hy Y, Torrance D B, First P N, de Heer W A, Min H, Adam S, Stiles M D, MacDonald A H and Strocio J A 2010 Nature 467 185
[8] Alicea J and Fisher M P A 2006 Phys. Rev. B 74 075422
[9] Sheng L, Sheng D N, Haldane F D M and Balents L 2007 Phys. Rev. Lett. 99 196802
[10] Herbut I F 2007 Phys. Rev. B 75 165411
[11] Nomura K, Ryu S and Lee D H 2009 Phys. Rev. Lett. 103 216801
[12] Hou C Y, Chamon C and Mudry C 2010 Phys. Rev. B 81 075427
[13] Abanin D A, Lee P A and Levitov L S 2006 Phys. Rev. Lett. 96 176803
[14] Abanin D A, Novoselov K S, Zeitler U, Lee P A, Geim A K and Levitov L S 2007 Phys. Rev. Lett. 98 196806
[15] Jung J and MacDonald A H 2009 Phys. Rev. B 80 235417
[16] Herbut I F 2007 Phys. Rev. B 76 085432
[17] Kharitonov M 2012 Phys. Rev. B 85 155439
[18] Kharitonov M 2012 Phys. Rev. B 86 075450
[19] Roy B, Kennett M P and Das Sarma S, arXiv:1406.5184
[20] Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C and Jarillo-Herrero P 2014 Nature 505 528
[21] Pyatkovskiy P K and Miransky V A 2014 Phys. Rev. B 90 195407
[22] Lado J L and Fernández-Rossier J 2014 Phys. Rev. B 90 165429
[23] Zhu W, Yuan H Y, Shi Q W, Hou J G and Wang X R 2011 New J. Phys. 13 113008
[24] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[25] Ezawa M 2012 New J. Phys. 14 033003
[26] Ezawa M 2013 Phys. Rev. B 87 155415
[27] Ezawa M 2013 Appl. Phys. Lett. 102 172103
[28] Amet F, Williams J R, Watanabe K, Taniguchi T and Gordon D G 2013 Phys. Rev. Lett. 110 216601
[29] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[30] Yu G L, Jalil R, Belle B, Mayorov A S, Blake P, Schedin F, et al. 2013 Proc. Natl. Acad. Sci. USA 110 3282
[31] Tahir M, Sabeeh K, Shaukat A and Schwingenschlögl U 2013 J. Appl. Phys. 114 223711
[32] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[33] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[34] Krstajić P M and Vasilopoulos P 2012 Phys. Rev. B 86 115432
[35] Krstajić P M and Vasilopoulos P 2011 Phys. Rev. B 83 075427
[36] Tahir M and Sabeeh K 2012 J. Phys.: Condens. Matter 24 135005
[37] Tse W K, Qiao Z H, Yao Y G, MacDonald A H and Niu Q 2011 Phys. Rev. B 83 155447
[38] Gusynin V P, Miransky V A, Sharapov S G, Shovkovy I A and Wyenberg C M 2009 Phys. Rev. B 79 115431
[39] Gusynin V P, Miransky V A, Sharapov S G and Shovkovy I A 2008 Phys. Rev. B 77 205409
[40] Abanin D A, Lee P A and Levitov L S 2006 Phys. Rev. Lett. 96 176803
[41] Jung J and MacDonald A H 2009 Phys. Rev. B 80 235417
[42] Pyatkovskiy P K and Miransky V A 2014 Phys. Rev. B 90 195407
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[15] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
No Suggested Reading articles found!