CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-valley quantum Hall phases in graphene |
Tian Hong-Yu (田宏玉) |
Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China |
|
|
Abstract We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential Δ into account but without spin-orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and Δ . When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e2/2h or 3e2/2h. The possibility of tuning different quantum Hall states with M and Δ suggests possible graphene-based spintronics and valleytronics applications.
|
Received: 26 June 2015
Revised: 06 August 2015
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447218, 11274059, 11404278, and 11447216). |
Corresponding Authors:
Tian Hong-Yu
E-mail: tianhy2010@163.com
|
Cite this article:
Tian Hong-Yu (田宏玉) Spin-valley quantum Hall phases in graphene 2015 Chin. Phys. B 24 127301
|
[1] |
Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
|
[2] |
Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[3] |
Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
|
[4] |
Peres N M R, Guinea F and Castro Neto A H 2006 Phys. Rev. B 73 125411
|
[5] |
Zhang Y, Jiang Z, Small J P, Purewal M S, Tan Y W, Fazlollahi M, Chudow J D, Jaszczak J A, Stormer H L and Kim P 2006 Phys. Rev. Lett. 96 136806
|
[6] |
Jiang Z, Zhang Y, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 106802
|
[7] |
Song Y J, Otte A F, Kuk Y, Hy Y, Torrance D B, First P N, de Heer W A, Min H, Adam S, Stiles M D, MacDonald A H and Strocio J A 2010 Nature 467 185
|
[8] |
Alicea J and Fisher M P A 2006 Phys. Rev. B 74 075422
|
[9] |
Sheng L, Sheng D N, Haldane F D M and Balents L 2007 Phys. Rev. Lett. 99 196802
|
[10] |
Herbut I F 2007 Phys. Rev. B 75 165411
|
[11] |
Nomura K, Ryu S and Lee D H 2009 Phys. Rev. Lett. 103 216801
|
[12] |
Hou C Y, Chamon C and Mudry C 2010 Phys. Rev. B 81 075427
|
[13] |
Abanin D A, Lee P A and Levitov L S 2006 Phys. Rev. Lett. 96 176803
|
[14] |
Abanin D A, Novoselov K S, Zeitler U, Lee P A, Geim A K and Levitov L S 2007 Phys. Rev. Lett. 98 196806
|
[15] |
Jung J and MacDonald A H 2009 Phys. Rev. B 80 235417
|
[16] |
Herbut I F 2007 Phys. Rev. B 76 085432
|
[17] |
Kharitonov M 2012 Phys. Rev. B 85 155439
|
[18] |
Kharitonov M 2012 Phys. Rev. B 86 075450
|
[19] |
Roy B, Kennett M P and Das Sarma S, arXiv:1406.5184
|
[20] |
Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C and Jarillo-Herrero P 2014 Nature 505 528
|
[21] |
Pyatkovskiy P K and Miransky V A 2014 Phys. Rev. B 90 195407
|
[22] |
Lado J L and Fernández-Rossier J 2014 Phys. Rev. B 90 165429
|
[23] |
Zhu W, Yuan H Y, Shi Q W, Hou J G and Wang X R 2011 New J. Phys. 13 113008
|
[24] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[25] |
Ezawa M 2012 New J. Phys. 14 033003
|
[26] |
Ezawa M 2013 Phys. Rev. B 87 155415
|
[27] |
Ezawa M 2013 Appl. Phys. Lett. 102 172103
|
[28] |
Amet F, Williams J R, Watanabe K, Taniguchi T and Gordon D G 2013 Phys. Rev. Lett. 110 216601
|
[29] |
Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
|
[30] |
Yu G L, Jalil R, Belle B, Mayorov A S, Blake P, Schedin F, et al. 2013 Proc. Natl. Acad. Sci. USA 110 3282
|
[31] |
Tahir M, Sabeeh K, Shaukat A and Schwingenschlögl U 2013 J. Appl. Phys. 114 223711
|
[32] |
Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
|
[33] |
Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
|
[34] |
Krstajić P M and Vasilopoulos P 2012 Phys. Rev. B 86 115432
|
[35] |
Krstajić P M and Vasilopoulos P 2011 Phys. Rev. B 83 075427
|
[36] |
Tahir M and Sabeeh K 2012 J. Phys.: Condens. Matter 24 135005
|
[37] |
Tse W K, Qiao Z H, Yao Y G, MacDonald A H and Niu Q 2011 Phys. Rev. B 83 155447
|
[38] |
Gusynin V P, Miransky V A, Sharapov S G, Shovkovy I A and Wyenberg C M 2009 Phys. Rev. B 79 115431
|
[39] |
Gusynin V P, Miransky V A, Sharapov S G and Shovkovy I A 2008 Phys. Rev. B 77 205409
|
[40] |
Abanin D A, Lee P A and Levitov L S 2006 Phys. Rev. Lett. 96 176803
|
[41] |
Jung J and MacDonald A H 2009 Phys. Rev. B 80 235417
|
[42] |
Pyatkovskiy P K and Miransky V A 2014 Phys. Rev. B 90 195407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|