Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116101    DOI: 10.1088/1674-1056/24/11/116101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural origin underlying the effect of cooling rate on solidification point

Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国)
Laboratory of Advanced Materials Solidification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Solidification behaviors of liquid aluminum at different cooling rates were examined via classical molecular dynamics simulation with an embedded atom method potential. The results demonstrate that solidification point decreases with increasing cooling rate. To explain this phenomenon, solid-like cluster in liquid was analyzed by the structural analysis method of bond order parameters. The results reveal that the size of the largest solid-like cluster in deeply undercooled liquid decreases with the increase of cooling rate, which can provide a structural interpretation to the above phenomenon.
Keywords:  liquid metal      undercooled solidification      local structure      molecular dynamics  
Received:  03 May 2015      Revised:  15 July 2015      Accepted manuscript online: 
PACS:  61.25.Mv (Liquid metals and alloys)  
  64.70.D- (Solid-liquid transitions)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB012900), the National Natural Science Foundation of China (Grant No. 51171115), the Natural Science Foundation of Shanghai City, China (Grant No. 10ZR1415700), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100073120008), the Program for New Century Excellent Talents in Universities of China. This work is partially supported by Alexander von Humboldt Foundation.
Corresponding Authors:  Han Xiu-Jun     E-mail:  xjhan@sjtu.edu.cn

Cite this article: 

Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国) Structural origin underlying the effect of cooling rate on solidification point 2015 Chin. Phys. B 24 116101

[1] Kurz W and Fisher D J 1986 Fundamentals of Solidification, 1984 edition (Switzerland: Trans. Tech. Publications LTD)
[2] Notthoff C, Feuerbacher B, Franz H, Herlach D M and Holland-Moritz D;2001 Phys. Rev. Lett. 86 1038
[3] Willnecker R, Herlach D M and Feuerbacher B;1986 Appl. Phys. Lett. 49 1339
[4] Rapaport D C 2004 The Art of Molecular Dynamics Simulation, 2004 edition (Cambridge: Cambridge University Press)
[5] Kramer M J, Mendelev M I and Asta M;2014 Philos. Mag. 94 1876
[6] Li F, Liu X J, Hou H Y, Chen G and Chen G L;2011 J. Appl. Phys. 110 013519
[7] Mendelev M I, Schmalian J, Wang C Z, Morris J R and Ho K M;2006 Phys. Rev. B 74 104206
[8] Li M Z, Wang C Z, Mendelev M I and Ho K M;2008 Phys. Rev. B 77 184202
[9] Shen B, Liu C Y, Jia Y, Yue G Q, Ke F S, Zhao H B, Chen L Y, Wang S Y, Wang C Z and Ho K M;2014 J. Non-cryst. Solids 383 13
[10] Xia J C, Zhu Z G and Liu C S 1999 Chin. Phys. Lett. 16 850
[11] Liu C S, Zhu Z G, Xia J C and Sun D Y 2000 Chin. Phys. Lett. 17 34
[12] Shibuta Y and Suzuki T;2011 Chem. Phys. Lett. 502 82
[13] Hou Z Y, Tian Z, Mo Y F and Liu R S;2014 Comp. Mater. Sci. 92 199
[14] Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B and Robinson D S;2003 Phys. Rev. Lett. 90 195504
[15] Mauro N A, Bendert J C, Vogt A J, Gewin J M and Kelton K F;2011 J. Chem. Phys. 135 044502
[16] Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M W;2011 Nat. Mater. 10 28
[17] Di Cicco A, Iesari F, De Panfili S, Celino M, Giusepponi S and Filipponi A;2014 Phys. Rev. B 89 060102
[18] Mauro N A, Wessels V, Bendert J C, Klein S, Gangopadhyay A K, Kramer M J, Hao S G, Rustan G E, Kreyssig A, Goldman A I and Kelton K F;2011 Phys. Rev. B 83 184109
[19] Ding J, Cheng Y Q and Ma E;2014 Acta Mater. 69 343
[20] Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z and Jiang J Z;2014 Acta Mater. 68 1
[21] http://lammps.sandia.gov/
[22] Mendelev M I, Kramer M J, Becker C A and Asta M;2008 Philos. Mag. 88 1723
[23] Mendelev M I;2012 Modelling Simul. Mater. Sci. Eng. 20 045014
[24] Nosé S;1984 J. Chem. Phys. 81 511
[25] Hoover W G;1985 Phys. Rev. A 31 1695
[26] Verlet L;1967 Phys. Rev. 159 98
[27] Wendt H R and Abraham F F;1978 Phys. Rev. Lett. 41 1244
[28] Steinhardt P J, Nelson D R and Ronchetti M;1983 Phys. Rev. B 28 784
[29] ten Wolde P N, Ruiz-Montero M J and Frenkel D;1996 J. Chem. Phys. 104 9932
[30] Dullens R P A, Aarts D G A L and Kegel W K;2006 Phys. Rev. Lett. 97 228301
[31] Gasser U, Weeks E R, Schofield A, Pusey P N and Weitz D A;2001 Science 292 258
[32] Guzmán J H and Weeks E R;2009 Proc. Nati. Acad. Sci. USA 106 15198
[33] Lechner W and Dellago C;2008 J. Chem. Phys. 129 114707
[34] Han X J, Chen M and Guo Z Y;2004 J. Phys.: Condens. Matter 16 705
[35] Han X J and Schober H R;2011 Phys. Rev. B 83 224201
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!