CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural origin underlying the effect of cooling rate on solidification point |
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国) |
Laboratory of Advanced Materials Solidification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Solidification behaviors of liquid aluminum at different cooling rates were examined via classical molecular dynamics simulation with an embedded atom method potential. The results demonstrate that solidification point decreases with increasing cooling rate. To explain this phenomenon, solid-like cluster in liquid was analyzed by the structural analysis method of bond order parameters. The results reveal that the size of the largest solid-like cluster in deeply undercooled liquid decreases with the increase of cooling rate, which can provide a structural interpretation to the above phenomenon.
|
Received: 03 May 2015
Revised: 15 July 2015
Accepted manuscript online:
|
PACS:
|
61.25.Mv
|
(Liquid metals and alloys)
|
|
64.70.D-
|
(Solid-liquid transitions)
|
|
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB012900), the National Natural Science Foundation of China (Grant No. 51171115), the Natural Science Foundation of Shanghai City, China (Grant No. 10ZR1415700), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100073120008), the Program for New Century Excellent Talents in Universities of China. This work is partially supported by Alexander von Humboldt Foundation. |
Corresponding Authors:
Han Xiu-Jun
E-mail: xjhan@sjtu.edu.cn
|
Cite this article:
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国) Structural origin underlying the effect of cooling rate on solidification point 2015 Chin. Phys. B 24 116101
|
[1] |
Kurz W and Fisher D J 1986 Fundamentals of Solidification, 1984 edition (Switzerland: Trans. Tech. Publications LTD)
|
[2] |
Notthoff C, Feuerbacher B, Franz H, Herlach D M and Holland-Moritz D;2001 Phys. Rev. Lett. 86 1038
|
[3] |
Willnecker R, Herlach D M and Feuerbacher B;1986 Appl. Phys. Lett. 49 1339
|
[4] |
Rapaport D C 2004 The Art of Molecular Dynamics Simulation, 2004 edition (Cambridge: Cambridge University Press)
|
[5] |
Kramer M J, Mendelev M I and Asta M;2014 Philos. Mag. 94 1876
|
[6] |
Li F, Liu X J, Hou H Y, Chen G and Chen G L;2011 J. Appl. Phys. 110 013519
|
[7] |
Mendelev M I, Schmalian J, Wang C Z, Morris J R and Ho K M;2006 Phys. Rev. B 74 104206
|
[8] |
Li M Z, Wang C Z, Mendelev M I and Ho K M;2008 Phys. Rev. B 77 184202
|
[9] |
Shen B, Liu C Y, Jia Y, Yue G Q, Ke F S, Zhao H B, Chen L Y, Wang S Y, Wang C Z and Ho K M;2014 J. Non-cryst. Solids 383 13
|
[10] |
Xia J C, Zhu Z G and Liu C S 1999 Chin. Phys. Lett. 16 850
|
[11] |
Liu C S, Zhu Z G, Xia J C and Sun D Y 2000 Chin. Phys. Lett. 17 34
|
[12] |
Shibuta Y and Suzuki T;2011 Chem. Phys. Lett. 502 82
|
[13] |
Hou Z Y, Tian Z, Mo Y F and Liu R S;2014 Comp. Mater. Sci. 92 199
|
[14] |
Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B and Robinson D S;2003 Phys. Rev. Lett. 90 195504
|
[15] |
Mauro N A, Bendert J C, Vogt A J, Gewin J M and Kelton K F;2011 J. Chem. Phys. 135 044502
|
[16] |
Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M W;2011 Nat. Mater. 10 28
|
[17] |
Di Cicco A, Iesari F, De Panfili S, Celino M, Giusepponi S and Filipponi A;2014 Phys. Rev. B 89 060102
|
[18] |
Mauro N A, Wessels V, Bendert J C, Klein S, Gangopadhyay A K, Kramer M J, Hao S G, Rustan G E, Kreyssig A, Goldman A I and Kelton K F;2011 Phys. Rev. B 83 184109
|
[19] |
Ding J, Cheng Y Q and Ma E;2014 Acta Mater. 69 343
|
[20] |
Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z and Jiang J Z;2014 Acta Mater. 68 1
|
[21] |
http://lammps.sandia.gov/
|
[22] |
Mendelev M I, Kramer M J, Becker C A and Asta M;2008 Philos. Mag. 88 1723
|
[23] |
Mendelev M I;2012 Modelling Simul. Mater. Sci. Eng. 20 045014
|
[24] |
Nosé S;1984 J. Chem. Phys. 81 511
|
[25] |
Hoover W G;1985 Phys. Rev. A 31 1695
|
[26] |
Verlet L;1967 Phys. Rev. 159 98
|
[27] |
Wendt H R and Abraham F F;1978 Phys. Rev. Lett. 41 1244
|
[28] |
Steinhardt P J, Nelson D R and Ronchetti M;1983 Phys. Rev. B 28 784
|
[29] |
ten Wolde P N, Ruiz-Montero M J and Frenkel D;1996 J. Chem. Phys. 104 9932
|
[30] |
Dullens R P A, Aarts D G A L and Kegel W K;2006 Phys. Rev. Lett. 97 228301
|
[31] |
Gasser U, Weeks E R, Schofield A, Pusey P N and Weitz D A;2001 Science 292 258
|
[32] |
Guzmán J H and Weeks E R;2009 Proc. Nati. Acad. Sci. USA 106 15198
|
[33] |
Lechner W and Dellago C;2008 J. Chem. Phys. 129 114707
|
[34] |
Han X J, Chen M and Guo Z Y;2004 J. Phys.: Condens. Matter 16 705
|
[35] |
Han X J and Schober H R;2011 Phys. Rev. B 83 224201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|