PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Simulations of the L–H transition dynamics with different heat and particle sources |
Li Hui-Dong (李会东)a, Wang Zhan-Hui (王占辉)b, Jan Weilandc, Feng Hao (冯灏)a, Sun Wei-Guo (孙卫国)a d |
a School of Science, Research Center for Advanced Computation, Xihua University, Chengdu 610039, China; b Southwestern Institute of Physics, Chengdu 610041, China; c Department Applied Physics, Chalmers. University of Technology and Euratom-VR Association, S41296 Gothenburg, Sweden; d Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland’s fluid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density ne, electron temperature Te, ion temperatures Ti, ion poloidal Vp, and toroidal momenta Vt are simulated self-consistently. The L-H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L-H transition, the strong poloidal flow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L-H transition. The effects of the heating and particle sources on the L-H transition process are studied systematically, and the critical power threshold of the L-H transition is also found.
|
Received: 02 April 2015
Revised: 22 July 2015
Accepted manuscript online:
|
PACS:
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
52.70.La
|
(X-ray and γ-ray measurements)
|
|
52.55.Tn
|
(Ideal and resistive MHD modes; kinetic modes)
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
Fund: Project supported by the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province, China (Grant No. 2014TD0023), the National Natural Science Foundation of China (Grant Nos. 11447228 and 11205053), and the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001). |
Corresponding Authors:
Wang Zhan-Hui, Feng Hao
E-mail: zhwang@swip.ac.cn;fenghao@mail.xhu.edu.cn
|
Cite this article:
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国) Simulations of the L–H transition dynamics with different heat and particle sources 2015 Chin. Phys. B 24 115204
|
[1] |
Wagner F, Fussmann G, Grave T, Keilhacker M, Kornherr M, Lackner K, McCormick K, Muller E R, Stabler A, Becker G, Bernhardi K, Ditte U, Eberhagen A, Gehre O, Gernhardt J, Gierke G V, Glock E, Gruber O, Haas G, Hesse M, Janeschitz G, Karger F, Kissel S, K1über O, Lisitano G, Mayer H M, Meisel D, Mertens V, Murrnann M, Poschenrieder W, Rapp H, Rohr H, Ryter F, Schneider F, Siller G, Smeulders P, Soldner F, Speth E, Steuer K H, Szymanski Z and Vollmer O;1984 Phys. Rev. Lett. 53 1453
|
[2] |
Keilhacker M;1987 Plasma Phys. Control. Fusion 29 1401
|
[3] |
Miki K, Diamond P H, Fedorczak N, Gürcan Ö D, Malkov M, Lee C, Kosuga Y, Tynan G, Xu G S, Estrada T, McDonald D, Schmitz L and Zhao K J;2013 Nucl. Fusion 53 073044
|
[4] |
Yan Z, McKee G R, Fonck R, Gohil P, Groebner R J and Osborne T H;2014 Phys. Rev. Lett. 112 125002
|
[5] |
Burrell K H;1997 Phys. Plasmas 4 1499
|
[6] |
Miki K, Diamond P H, Hahn S H, Xiao W W, Gürcan Ö D and Tynan G R;2013 Phys. Rev. Lett. 110 195002
|
[7] |
Kim E and Diamond P H;2003 Phys. Rev. Lett. 90 185006
|
[8] |
Estrada T, Hidalgo C, Happel T and Diamond P H;2011 Phys. Rev. Lett. 107 245004
|
[9] |
Fundamenski W, Militello F, Moulton D and McDonald D C;2012 Nucl. Fusion 52 062003
|
[10] |
Xu G S, Shao L M, Liu S C, Wang H Q, Wan B N, Guo H Y, Diamond P H, Tynan G R, Xu M, Zweben S J, Naulin V, Nielsen A H, Rasmussen J J, Fedorczak N, Manz P, Miki K, Yan N, Chen R, Cao B, Chen L, Wang L, Zhang W and Gong X Z;2014 Nucl. Fusion 54 013007
|
[11] |
Weymiens W, Blank H J and Hogeweij G M D;2013 Phys. Plasmas 20 082306
|
[12] |
Dam M, Brons M and Rasmussen J J;2013 Phys. Plasmas 20 102302
|
[13] |
Connor J W and Wilson H R;2000 Plasma Phys. Control. Fusion 42 R1
|
[14] |
Leconte M, Diamond P H and Xu Y;2014 Nucl. Fusion 54 013004
|
[15] |
Willensdorfer M, Fable E, Wolfrum E, Aho-Mantila L, Aumayr F, Fischer R, Reimold F, Ryter F and the ASDEX Upgrade Team;2013 Nucl. Fusion 53 093020
|
[16] |
Bourdelle C, Maggi C F, Chôné L, Beyer P, Citrin J, Fedorczak N, Garbet X, Loarte A, Millitello F, Romanelli M, Sarazin Y and JET EFDA Contributors;2014 Nucl. Fusion 54 022001
|
[17] |
Ryter F, Barrera Orte L, Kurzan B, McDermott R M, Tardini G, Viezzer E, Bernert M, Fischer R and The ASDEX Upgrade Team;2014 Nucl. Fusion 54 083003
|
[18] |
Xu G S, Wang H Q and Xu M;2014 Nucl. Fusion 54 103002
|
[19] |
Cziegler I, Tynan G R, Diamond P H, Hubbard A E, Hughes J W, Irby J and Terry J L;2014 Plasma Phys. Control. Fusion 56 075013
|
[20] |
Estrada T, Ascasíbar E, Blanco E, Cappa A, Diamond P H, Happel T, Hidalgo C, Liniers M, Ph van Milligen B, Pastor I, Tafalla D and the TJ-II Team;2012 Plasma Phys. Control Fusion 54 124024
|
[21] |
Miki K, Diamond P H, Hahn S H, Xiao W W, Gürcan Ö D and Tynan G R;2013 Phys. Plasmas 20 082304
|
[22] |
Chôné L, Beyer P, Sarazin Y, Fuhr G, Bourdelle C and Benkadda S;2014 Phys. Plasmas 21 070702
|
[23] |
Müller S H, Conway G D, Birkenmeier G, Carralero D, Happel T, Herrmann A, Manz P, de Marné P, Mlynek A, Müller H W, Potzel S, Rohde V, Stroth U, Tsalas M, Tynan G R, Wolfrum E and ASDEX Upgrade Team;2014 Phys. Plasmas 21 042301
|
[24] |
Stacey W M, Sayer M H, Floyd J P and Groebner R J;2013 Phys. Plasmas 20 012509
|
[25] |
Battaglia D J, Chang C S and Kaye S M;2013 Nucl. Fusion 53 113032
|
[26] |
Tynan G R, Xu M, Diamond P H, Boedo J A, Cziegler I, Fedorczak N, Manz P, Miki K, Thakur S, Schmitz L, Zeng Z, Doyle E J, McKee G M, Yan Z, Xu G S, Wan B N, Wang H Q, Guo H Y, Dong J, Zhao K, Cheng J, Hong W Y and Yan L W;2013 Nucl. Fusion 53 073053
|
[27] |
Wu G J, Zhang X D, Li Y D, Sun P J and Cao G M;2014 Nucl. Fusion 54 083030
|
[28] |
Feng B B, Yao L H, Chen C Y, Ji X Q, Zhong W L, Shi Z B, Yu D L, Cui Z Y, Song X M and Duan X R;2013 Acta Phys. Sin. 62 015203 (in Chinese)
|
[29] |
Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y and Wang D Z;2013 Acta Phys. Sin. 62 245206 (in Chinese)
|
[30] |
Weiland J 2012 Stability and Transport in Magnetic Confinement Systems (New York : Springer) p. 1
|
[31] |
Weiland J;2014 Phys. Plasmas 21 122501
|
[32] |
Rafiq T, Kritz A H, Weiland J, Pankin A Y and Luo L;2013 Phys. Plasmas 20 032506
|
[33] |
Ma J, Wang G, Weiland J, Rafiq T and Kritz A H;2015 Phys. Plasmas 22 012304
|
[34] |
Garzotti L, Garbe X, Mantica P, Parail V, Valovič M, Corrigan G, Heading D, Jones T T C, Lang P, Nordman H, Pégourié B, Saibene G, Spence J, Strand P, Weiland J and contributors to the EFDA-JET Work programme;2003 Nucl. Fusion 43 1829
|
[35] |
Weiland J, Crombe K, Mantica P, Naulin V, Tala T and the JETEFDA Contributors 2011 AIP Conference Proceedings-American Institute of Physics 1392 85
|
[36] |
Garzotti L, Garbet X, Mantica P and Parail V;2003 Nucl. Fusion 43 1829
|
[37] |
Garbet X, Garzotti L and Mantica P;2003 Phys. Rev. Lett. 91 035001
|
[38] |
Waltz R E, Kerbel G O and Milovich J;1994 Phys. Plasmas 1 2229
|
[39] |
Zagorodny A and Weiland J;2009 Phys. Plasmas 16 052308
|
[40] |
Staebler G M, Waltz R E and Wiley J C;1997 Nucl. Fusion 37 287
|
[41] |
Singh R and Weiland J;1999 Phys. Plasmas 6 1397
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|