Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057402    DOI: 10.1088/1674-1056/26/5/057402
Special Issue: Virtual Special Topic — High temperature superconductivity
RAPID COMMUNICATION Prev   Next  

Doping Mn into (Li1-xFex)OHFe1-ySe superconducting crystals via ion-exchange and ion-release/introduction syntheses

Huaxue Zhou(周花雪)1,2, Shunli Ni(倪顺利)2,3, Jie Yuan(袁洁)2,3, Jun Li(李军)4, Zhongpei Feng(冯中沛)2,3, Xingyu Jiang(江星宇)2,3, Yulong Huang(黄裕龙)2,3, Shaobo Liu(刘少博)2,3, Yiyuan Mao(毛义元)2,3, Fang Zhou(周放)2,3, Kui Jin(金魁)2,3, Xiaoli Dong(董晓莉)2,3, Zhongxian Zhao(赵忠贤)2,3
1 College of Physics, Chongqing University, Chongqing 401331, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China;
3 Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
Abstract  

We report the success in introducing Mn into (Li1-xFex)OHFe1-ySe superconducting crystals by applying two different hydrothermal routes, ion exchange (1-step) and ion release/introduction (2-step). The micro-region x-ray diffraction and energy dispersive x-ray spectroscopy analyses indicate that Mn has been doped into the lattice, and its content in the 1-step fabricated sample is higher than that in the 2-step one. Magnetic susceptibility and electric transport properties reveal that Mn doping influences little on the superconducting transition, regardless of 1-step or 2-step routes. By contrast, the characteristic temperature T*, at which the negative Hall coefficient reaches its minimum, is significantly reduced by Mn doping. This implies that the hole carriers contribution is obviously modified, and hence the hole band might have no direct relationship with the superconductivity in (Li1-xFex)OHFe1-ySe superconductors. Our present hydrothermal methods of ion exchange and ion release/introduction provide an efficient way for elements substitution/doping into (Li1-xFex)OHFe1-ySe superconductors, which will promote the in-depth investigations on the role of multiple electron and hole bands and their interplay with the high-temperature superconductivity in the FeSe-based superconductors.

Keywords:  FeSe-based superconductors      doping      ion-exchange and release/introduction      Hall coefficient  
Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  82.30.Hk (Chemical exchanges (substitution, atom transfer, abstraction, disproportionation, and group exchange))  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  74.25.F- (Transport properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574370 and 61501220), Frontier Program of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001 and QYZDY-SSW-SLH008), the National Basic Research Program of China (Grant Nos. 2013CB921700 and 2016YFA0300301), and “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB07020100).

Corresponding Authors:  Xiaoli Dong     E-mail:  dong@iphy.ac.cn

Cite this article: 

Huaxue Zhou(周花雪), Shunli Ni(倪顺利), Jie Yuan(袁洁), Jun Li(李军), Zhongpei Feng(冯中沛), Xingyu Jiang(江星宇), Yulong Huang(黄裕龙), Shaobo Liu(刘少博), Yiyuan Mao(毛义元), Fang Zhou(周放), Kui Jin(金魁), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤) Doping Mn into (Li1-xFex)OHFe1-ySe superconducting crystals via ion-exchange and ion-release/introduction syntheses 2017 Chin. Phys. B 26 057402

[1] Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H 2014 Phys. Rev. B 89 020507R
[2] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[3] Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H H and Johrendt D 2015 Angew. Chem. Int. Edit. 54 293
[4] Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J and Clarke S J 2015 Inorg. Chem. 54 1958
[5] Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66
[6] Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
[7] Wu Y P, Zhao D, Lian X R, Lu X F, Wang N Z, Luo X G, Chen X H and Wu T 2015 Phys. Rev. B 91 125107
[8] Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G and Zhao Z 2016 Phys. Rev. B 93 224512
[9] Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun. 7 10608
[10] Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X and Wen H H 2016 Nat. Commun. 7 10565
[11] Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. B 93 060501
[12] Yan Y J, Zhang W H, Ren M Q, Liu X, Lu X F, Wang N Z, Niu X H, Fan Q, Miao J, Tao R, Xie B P, Chen X H, Zhang T and Feng D L 2016 Phys. Rev. B 94 134502
[13] Yu G, Zhang G Y, Ryu G H and Lin C T 2016 J. Phys.: Condens. Matter 28 015701
[14] Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J and Rodriguez E E 2016 Journal of Materials Chemistry C 4 3934
[15] Chen W, Zeng C, Kaxiras E and Zhang Z 2016 Phys. Rev. B 93 064517
[16] Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X and Zhao Z 2017 J. Phys.: Condens. Matter 29 025701
[17] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[18] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
[19] Yan Y J, Zhang M, Wang A F, Ying J J, Li Z Y, Qin W, Luo X G, Li J Q, Hu J P and Chen X H 2012 Sci. Rep. 2 212
[20] Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J and Wang W Y 2013 J. Am. Chem. Soc. 135 2951
[21] Zhang A M, Xia T L, Liu K, Tong W, Yang Z R and Zhang Q M 2013 Sci. Rep. 3 1216
[22] Sedlmaier S J, Cassidy S J, Morris R G, Drakopoulos M, Reinhard C, Moorhouse S J, O'Hare D, Manuel P, Khalyavin D and Clarke S J 2014 J. Am. Chem. Soc. 136 630
[23] Cheng P, Shen B, Hu J and Wen H H 2010 Phys. Rev. B 81 174529
[24] Günther A, Deisenhofer J, Kant C, Nidda H A K v, Tsurkan V and Loidl A 2011 Supercond. Sci. Tech. 24 045009
[25] Li J, Guo Y, Zhang S, Yuan J, Tsujimoto Y, Wang X, Sathish C, Sun Y, Yu S, Yi W, Yamaura K, Takayama-Muromachiu E, Shirako Y, Akaogi M and Kontani H 2012 Phys. Rev. B 85 214509
[26] Singh S J, Shimoyama J, Yamamoto A, Ogino H and Kishio K 2013 Physica C 494 57
[27] Zhou T T, Chen X L, Guo J G, Jin S F, Wang G, Lai X F, Ying T P, Zhang H, Shen S J, Wang S C and Zhu K X 2013 J. Phys.: Condens. Matter 25 275701
[28] Deng Q, Ding X X, Li S, Tao J, Yang H and Wen H H 2014 New J.Phys. 16 063020
[29] Li J, Guo Y F, Yang Z R, Yamaura K, Takayama-Muromachi E, Wang H B and Wu P H 2016 Supercond. Sci. Tech. 29 053001
[30] Yuan D, Huang Y, Ni S, Zhou H, Mao Y, Hu W, Yuan J, Jin K, Zhang G, Dong X and Zhou F 2016 Chin. Phys. B 25 077404R
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[15] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
No Suggested Reading articles found!