Special Issue:
Virtual Special Topic — High temperature superconductivity
|
|
|
Doping Mn into (Li1-xFex)OHFe1-ySe superconducting crystals via ion-exchange and ion-release/introduction syntheses |
Huaxue Zhou(周花雪)1,2, Shunli Ni(倪顺利)2,3, Jie Yuan(袁洁)2,3, Jun Li(李军)4, Zhongpei Feng(冯中沛)2,3, Xingyu Jiang(江星宇)2,3, Yulong Huang(黄裕龙)2,3, Shaobo Liu(刘少博)2,3, Yiyuan Mao(毛义元)2,3, Fang Zhou(周放)2,3, Kui Jin(金魁)2,3, Xiaoli Dong(董晓莉)2,3, Zhongxian Zhao(赵忠贤)2,3 |
1 College of Physics, Chongqing University, Chongqing 401331, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China;
3 Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We report the success in introducing Mn into (Li1-xFex)OHFe1-ySe superconducting crystals by applying two different hydrothermal routes, ion exchange (1-step) and ion release/introduction (2-step). The micro-region x-ray diffraction and energy dispersive x-ray spectroscopy analyses indicate that Mn has been doped into the lattice, and its content in the 1-step fabricated sample is higher than that in the 2-step one. Magnetic susceptibility and electric transport properties reveal that Mn doping influences little on the superconducting transition, regardless of 1-step or 2-step routes. By contrast, the characteristic temperature T*, at which the negative Hall coefficient reaches its minimum, is significantly reduced by Mn doping. This implies that the hole carriers contribution is obviously modified, and hence the hole band might have no direct relationship with the superconductivity in (Li1-xFex)OHFe1-ySe superconductors. Our present hydrothermal methods of ion exchange and ion release/introduction provide an efficient way for elements substitution/doping into (Li1-xFex)OHFe1-ySe superconductors, which will promote the in-depth investigations on the role of multiple electron and hole bands and their interplay with the high-temperature superconductivity in the FeSe-based superconductors.
|
Accepted manuscript online:
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
82.30.Hk
|
(Chemical exchanges (substitution, atom transfer, abstraction, disproportionation, and group exchange))
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574370 and 61501220), Frontier Program of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001 and QYZDY-SSW-SLH008), the National Basic Research Program of China (Grant Nos. 2013CB921700 and 2016YFA0300301), and “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB07020100). |
Corresponding Authors:
Xiaoli Dong
E-mail: dong@iphy.ac.cn
|
Cite this article:
Huaxue Zhou(周花雪), Shunli Ni(倪顺利), Jie Yuan(袁洁), Jun Li(李军), Zhongpei Feng(冯中沛), Xingyu Jiang(江星宇), Yulong Huang(黄裕龙), Shaobo Liu(刘少博), Yiyuan Mao(毛义元), Fang Zhou(周放), Kui Jin(金魁), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤) Doping Mn into (Li1-xFex)OHFe1-ySe superconducting crystals via ion-exchange and ion-release/introduction syntheses 2017 Chin. Phys. B 26 057402
|
[1] |
Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H 2014 Phys. Rev. B 89 020507R
|
[2] |
Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
|
[3] |
Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H H and Johrendt D 2015 Angew. Chem. Int. Edit. 54 293
|
[4] |
Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J and Clarke S J 2015 Inorg. Chem. 54 1958
|
[5] |
Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66
|
[6] |
Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
|
[7] |
Wu Y P, Zhao D, Lian X R, Lu X F, Wang N Z, Luo X G, Chen X H and Wu T 2015 Phys. Rev. B 91 125107
|
[8] |
Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G and Zhao Z 2016 Phys. Rev. B 93 224512
|
[9] |
Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun. 7 10608
|
[10] |
Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X and Wen H H 2016 Nat. Commun. 7 10565
|
[11] |
Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. B 93 060501
|
[12] |
Yan Y J, Zhang W H, Ren M Q, Liu X, Lu X F, Wang N Z, Niu X H, Fan Q, Miao J, Tao R, Xie B P, Chen X H, Zhang T and Feng D L 2016 Phys. Rev. B 94 134502
|
[13] |
Yu G, Zhang G Y, Ryu G H and Lin C T 2016 J. Phys.: Condens. Matter 28 015701
|
[14] |
Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J and Rodriguez E E 2016 Journal of Materials Chemistry C 4 3934
|
[15] |
Chen W, Zeng C, Kaxiras E and Zhang Z 2016 Phys. Rev. B 93 064517
|
[16] |
Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X and Zhao Z 2017 J. Phys.: Condens. Matter 29 025701
|
[17] |
Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
|
[18] |
Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
|
[19] |
Yan Y J, Zhang M, Wang A F, Ying J J, Li Z Y, Qin W, Luo X G, Li J Q, Hu J P and Chen X H 2012 Sci. Rep. 2 212
|
[20] |
Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J and Wang W Y 2013 J. Am. Chem. Soc. 135 2951
|
[21] |
Zhang A M, Xia T L, Liu K, Tong W, Yang Z R and Zhang Q M 2013 Sci. Rep. 3 1216
|
[22] |
Sedlmaier S J, Cassidy S J, Morris R G, Drakopoulos M, Reinhard C, Moorhouse S J, O'Hare D, Manuel P, Khalyavin D and Clarke S J 2014 J. Am. Chem. Soc. 136 630
|
[23] |
Cheng P, Shen B, Hu J and Wen H H 2010 Phys. Rev. B 81 174529
|
[24] |
Günther A, Deisenhofer J, Kant C, Nidda H A K v, Tsurkan V and Loidl A 2011 Supercond. Sci. Tech. 24 045009
|
[25] |
Li J, Guo Y, Zhang S, Yuan J, Tsujimoto Y, Wang X, Sathish C, Sun Y, Yu S, Yi W, Yamaura K, Takayama-Muromachiu E, Shirako Y, Akaogi M and Kontani H 2012 Phys. Rev. B 85 214509
|
[26] |
Singh S J, Shimoyama J, Yamamoto A, Ogino H and Kishio K 2013 Physica C 494 57
|
[27] |
Zhou T T, Chen X L, Guo J G, Jin S F, Wang G, Lai X F, Ying T P, Zhang H, Shen S J, Wang S C and Zhu K X 2013 J. Phys.: Condens. Matter 25 275701
|
[28] |
Deng Q, Ding X X, Li S, Tao J, Yang H and Wen H H 2014 New J.Phys. 16 063020
|
[29] |
Li J, Guo Y F, Yang Z R, Yamaura K, Takayama-Muromachi E, Wang H B and Wu P H 2016 Supercond. Sci. Tech. 29 053001
|
[30] |
Yuan D, Huang Y, Ni S, Zhou H, Mao Y, Hu W, Yuan J, Jin K, Zhang G, Dong X and Zhou F 2016 Chin. Phys. B 25 077404R
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|