Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067301    DOI: 10.1088/1674-1056/abdda6

High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs

Song Wang(王松)1, Qihui Ye(叶起惠)2,3, Xudong Chen(陈绪栋)2, Yanzhu Hu(胡燕祝)1, and Gang Song(宋钢)2,†
1 School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 International School, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We investigate a high sensitive chiral molecule detector based on Goos-Hanchen shift (S) in Kretschmann configuration involving chiral tri (diethylene glycol monobutyl) citrates (TDBCs). Fresnel equations and the stationary phase method are employed to calculate S. Due to the interaction between surface plasmon polaritons and chiral TDBCs, S with chiral TDBCs are amplified at near the resonant wavelengths of chiral TDBCs. Our calculation results show that although the difference between the resonant wavelengths of left and right TDBCs is 4.5 nm, the positions of the largest S for the structures with left TDBCs and right TDBCs do not overlap. S reaches 400 times (or 200 times) the incident wavelength around the resonant wavelength of left TDBCs (or right TDBCs). The difference of S with chiral TDBCs (ΔS) can reach 400 times or 200 times the incident wavelength in certain conditions, which can be directly observed in experiments. Left TDBCs and right TDBCs are easily distinguished. There is an optimal thickness of the metal film to realize the largest difference of S between Kretschmann configurations with left TDBCs and right TDBCs. Furthermore, we discuss the oscillator strength f, which is mainly determined by TDBC concentration. We find that our proposed detector is quite sensitive with f. By changing f from 0.008 to 0.014 with the step of 0.002, the change of ΔS is no less than five times the incident wavelength (2.9 μ). Our proposed structure is very sensitive to the chirality and the concentration of TDBCs and has potential applications in distinguishing the chirality detector.
Keywords:  surface plasmon polaritons      chirality      Goos-Hanchen shift  
Received:  06 December 2020      Revised:  02 January 2021      Accepted manuscript online:  20 January 2021
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by Science and Technology Nova Plan of Beijing City, China (Grant No. Z201100006820122) and Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Gang Song     E-mail:

Cite this article: 

Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢) High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs 2021 Chin. Phys. B 30 067301

[1] Goos F and Hanchen H 1947 Ann. der Phys. 436 333
[2] Artmann K 1948 Ann. der Phys. 2 87
[3] Johansen K, StaLberg R, Lundstro M I and Liedberg B 2000 Measurement Sci. and Techn. 11 1630
[4] Chen C W, Wei C, Lin L S, Liao Z H and Lin H P 2007 Appl. Opt. 46 5347
[5] Nie S H, Wang X, Li J J, Clinite R and Cao J M 2009 Appl. Phys. Lett. 94 166101
[6] Yin X B, Hesselink L, Liu Z W, Fang N and Xiang Z 2004 Appl. Phys. Lett. 85 372
[7] Zhou H C, Chen X, Hou P and Li C F 2008 Opt. Lett. 33 1249
[8] Fan Y H, Shen N H, Zhang F L, Wei Z Y, Li H Q, Zhao Q, Fu Q H, Zhang P, Koschny T and Soukoulis C M 2016 Adv. Opt. Mater. 4 1824
[9] Kang J H, Wang S, Shi Z W, Zhao W Y, Yablonovitch E and Wang F 2017 Nano Lett. 17 1768
[10] Alamri M, Zubairy M S and Zeng X D 2017 Opt. Express 25 23579
[11] Lee J S, Huynh T, Lee S Y, Lee K G, Lee J Y, Tame M, Rockstuhl C and Lee C Y 2017 Phys. Rev. A 96 033833
[12] Pang K W, Li H H, Song G and Zhang P F 2019 Mod. Phys. Lett. B 33 1950370
[13] Liu Y, Cao F L, Liu J K, Xiao L and Shen Z K 2019 Chin. Phys. B 28 028504
[14] Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 038504
[15] Gao R L, Liu Y, Ouyang X P, Chen J and Ouyang X 2019 Sci. China Phys. Mech. and Astron. 62 122012
[16] Liu L Y, Ouyang X, Ruan J L, Bai S and Ouyang X P 2019 IEEE Trans. on Nuclear Science 66 737
[17] Fan Yuan G J, Wang S, Yin Z Q, Chen W, He D Y, Guo G C and Han Z F 2020 Quantum Engineering 2 e56
[18] Chai G, Li D W, Cao Z W, Zhang M H and Zeng G H 2020 Quantum Engineering 2 e37
[19] Bellessa J, Bonnand C, Plenet J C and Mugnier J 2004 Phys. Rev. Lett. 93 036404
[20] Ouyang Q L, Zeng S W, Jiang L, Hong L Y, Xu G X, Dinh X Q, Qian J, He S L, Qu J L and Coquet P 2016 Sci. Rep. 6 28190
[21] Moreau J, Bryche J F, Olivero A, Barbillon G, Coutrot A L, Bartenlian B, Sarkar M, Besbes M and Canva M 2015 ACS Photon. 2 237
[22] Memmi H, Benson O, Sadofev S and Kalusniak S 2017 Phys. Rev. Lett. 118 126802
[23] Hentschel M, Schäferling M, Duan X Y, Giessen H and Liu N 2017 Sci. adv. 3 e1602735
[24] Patterson D, Schnell M and Doyle J M 2013 Nature 497 475
[25] George J and Thomas K G 2010 J. Am. Chem. Soc. 132 2502
[26] Sun M T, Zhang Z L, Wang P J, Li Q, Ma F C and Xu H X 2013 Light: Sci. & Applications 2 e112
[27] Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller M A, Högele A, Simmel F C, Govorov A O and Liedl T 2012 Nature 483 311
[28] Maoz B M, Chaikin Y L, Tesler A B, Elli O B, Fan Z Y, Govorov A O and Markovich G 2013 Nano Lett. 13 1203
[29] Zhang S P, Wei H, Bao K, Häkanson U, Halas N J, Nordlander P and Xu H X 2011 Phys. Rev. Lett. 107 096801
[30] Govorov A O, Fan Z Y, Hernandez P, Slocik J M and Naik R R 2010 Nano Lett. 10 1374
[31] Chervy T, Azzini S, Lorchat E, Wang S J, Gorodetski Y, Hutchison J A, Berciaud S, Ebbesen T W and Genet C 2018 ACS Photon. 5 1281
[32] Alizadeh M H and Reinhard B M 2015 ACS Photon. 2 1780
[33] Jiang Q B, Pham A, Berthel M, Huant S, Bellessa J, Genet C and Drezet A 2016 ACS Photon. 3 1116
[34] Lan X and Wang Q B 2016 Adv. Mater. 28 10499
[35] Song G, Guo J Q, Duan G Y, Jiao R Z and Yu L 2020 Nanotechnology 31 345202
[36] He T T, Ye Q H and Song G 2020 Chin. Phys. B 29 97306
[37] Ye F, Merlo J M, Burns M J and Naughton M J 2014 Nanophoton. 3 33
[38] Liu Y, Ke Y G, Luo H L and Wen S C 2016 Nanophoton. 6 51
[39] Afshinmanesh F, White J S, Cai W S and Brongersma M L 2012 Nanophoton. 1 125
[40] Darweesh A, Bauman S, Debu S and Herzog J 2018 Nanomaterials 8 809
[41] Wang Y D, Liu H X, Wang S L, Cai M, Zhang H F and Qiao Y B 2020 Nanomaterials 10 2012
[42] Vyshnevyy A A and Fedyanin D Y 2020 Nanomaterials 10 856
[43] Palik E D 1998 Handbook of optical constants of solids (Vol. 3) (Academic Press)
[44] Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer Press)
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[7] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[8] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[9] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[12] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[13] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[14] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[15] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
No Suggested Reading articles found!