Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 105101    DOI: 10.1088/1674-1056/24/10/105101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films

Ali Badawia, N. Al-Hosinya b
a Department of Physics, Faculty of Science, Taif University, Taif m21974, Saudi Arabia;
b Department of Physics, Faculty of Science, Aljouf University, Sakkaka 42421, Saudi Arabia
Abstract  Dynamic mechanical properties of nanocomposite films with different ratios of single walled carbon nanotubes/polymethyl methacrylate (SWCNTs/PMMA) are studied. Nanocomposite films of different ratios (0, 0.5, 1.0, and 2.0 weight percent (wt%)) of SWCNTs/PMMA are fabricated by using a casting technique. The morphological and structural properties of both SWCNT powder and SWCNTs/PMMA nanocomposite films are investigated by using a high resolution transmission electron microscope and x-ray diffractometer respectively. The mechanical properties including the storage modulus, loss modulus, loss factor (tanδ) and stiffness of the nanocomposite film as a function of temperature are recorded by using a dynamic mechanical analyzer at a frequency of 1 Hz. Compared with pure PMMA film, the nanocomposite films with different ratios of SWCNTs/PMMA are observed to have enhanced storage moduli, loss moduli and high stiffness, each of which is a function of temperature. The intensity of the tanδ peak for pure PMMA film is larger than those of the nanocomposite films. The glass transition temperature (Tg) of SWCNTs/PMMA nanocomposite film shifts towards the higher temperature side with respect to pure PMMA film from 91.2 ℃ to 99.5 ℃ as the ratio of SWCNTs/PMMA increases from 0 to 2.0 wt%.
Keywords:  SWCNTs/PMMA nanocomposite      mechanical properties      stiffness      glass transition temperature  
Received:  14 April 2015      Revised:  24 May 2015      Accepted manuscript online: 
PACS:  51.35.+a (Mechanical properties; compressibility)  
  61.46.-w (Structure of nanoscale materials)  
  62.20.-x (Mechanical properties of solids)  
  62.25.-g (Mechanical properties of nanoscale systems)  
Fund: Project supported by Taif University (Grant No. 1/435/3524).
Corresponding Authors:  Ali Badawi     E-mail:  adaraghmeh@yahoo.com

Cite this article: 

Ali Badawi, N. Al-Hosiny Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films 2015 Chin. Phys. B 24 105101

[1] Al-Hosiny N M, Abdallah S, Moussa M A A and Badawi A 2013 J. Polymer Res. 20 1
[2] Yim B S and Kim J M 2015 J. Mater. Sci.: Mater. Electron. 26 1678
[3] Badawi A 2015 Chin. Phys. B 24 047205
[4] Badawi A, Al-Hosiny N, Abdallah S, Merazga A and Talaat H 2014 Mater. Sci. Semicond. Process. 26 162
[5] Badawi A 2015 J. Mater. Sci.: Mater. Electron. 26 3450
[6] Wilberforce S I J, Best S M and Cameron R E 2010 J. Mater. Sci.: Mater. Med. 21 3085
[7] Rodrigues F O, Salvatierra R V, Zarbin A J G and Rocco M L M 2013 Journal of Molecular Structure 1037 93
[8] Smajda R, Györi Z, Sápi A, Veres M, Oszkó A, Kis-Csitári J, Kukovecz Á, Kónya Z and Kiricsi I 2007 Journal of Molecular Structure 834-836 471
[9] Khanna P K and Singh N 2007 Journal of Luminescence 127 474
[10] Sewda K and Maiti S N 2013 Polym. Bull. 70 2657
[11] Souier T, Maragliano C, Stefancich M and Chiesa M 2013 Carbon 64 150
[12] Yang L, Li M, Zhang Y, Yi K, Ma J and Liu Y 2014 J. Mater. Sci.: Mater. Electron. 25 1047
[13] Mazov I N, Ilinykh I A, Kuznetsov V L, Stepashkin A A, Ergin K S, Muratov D S, Tcherdyntsev V V, Kuznetsov D V and Issi J P 2014 J. Alloys Compd. 586 Supplement 1 S440
[14] Faria R, Duncan J C and Brereton R G 2007 Polymer Testing 26 402
[15] Rieger J 2001 Polymer Testing 20 199
[16] Brostow W, Chiu R, Kalogeras I M and Vassilikou-Dova A 2008 Mater. Lett. 62 3152
[17] Montazeri A, Pourshamsian K and Riazian M 2012 Mater. Design 36 408
[18] Mathur V, Dixit M, Rathore K S, Saxena N S and Sharma K B 2011 Front. Chem. Sci. Eng. 5 258
[19] Tomar A K, Mahendia S and Kumar S 2011 Adv. Appl. Sci. Res. 2 327
[20] Lafuente E, Callejas M A, Sainz R, Benito A M, Maser W K, Sanjuán M L, Saurel D, de Teresa J M and Martínez M T 2008 Carbon 46 1909
[21] Oh W C and Chen M L 2008 Bull. Korean Chem. Soc. 29 159
[22] Dixit M, Gupta S, Mathur V, Rathore K S, Sharma K and Saxena N S 2009 Chalcogenide Letters 6 131
[23] Essabir H, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz F Z and Qaiss A 2013 Mater. Design 51 780
[24] Huang Y L, Ma C C M, Yuen S M, Chuang C Y, Kuan H C, Chiang C L and Wu S Y 2011 Mater. Chem. Phys. 129 1214
[25] Sahooa N G, Ranab S, Chob J W, Li L and Chana S H 2010 Prog. Polym. Sci. 35 837
[26] Martínez-Hernández A L, Velasco-Santos C and Castaño V M 2010 Current Nanoscience 6 12
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Drop impact on substrates with heterogeneous stiffness
Yang Cheng(成阳), Jian-Gen Zheng(郑建艮), Chen Yang(杨晨), Song-Lei Yuan(袁松雷), Guo Chen(陈果), and Li-Yu Liu(刘雳宇). Chin. Phys. B, 2022, 31(8): 084702.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[6] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[7] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[8] Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system
Yong Yang(杨勇) and Yun-Yi Wu(吴云翼). Chin. Phys. B, 2021, 30(7): 077404.
[9] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[10] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[11] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[12] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[13] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[14] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[15] Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution
Di Tang(唐迪), Hai Zhu(朱海), Wei Yuan(袁巍), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2019, 28(7): 074703.
No Suggested Reading articles found!