Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 105102    DOI: 10.1088/1674-1056/24/10/105102
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure

Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The one-dimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the microwave frequency on the formation of air plasma. Simulation results show that, the filamentary plasma array propagating toward the microwave source is formed at different microwave frequencies. As the microwave frequency decreases, the ratio of the distance between two adjacent plasma filaments to the corresponding wavelength remains almost unchanged (on the order of 1/4), while the plasma front propagates more slowly due to the increase in the formation time of the new plasma filament.
Keywords:  microwave frequency      plasma formation      air breakdown      electron fluid model  
Received:  20 January 2015      Revised:  13 April 2015      Accepted manuscript online: 
PACS:  51.50.+v (Electrical properties)  
  52.80.Pi (High-frequency and RF discharges)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China and the National Natural Science Foundation of China (Grant No. 61501358).
Corresponding Authors:  Zhao Peng-Cheng     E-mail:  pczhao@xidian.edu.cn

Cite this article: 

Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏) Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure 2015 Chin. Phys. B 24 105102

[1] Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R and Temkin R J 2008 Phys. Rev. Lett. 100 035003
[2] Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A and Oda Y 2009 Phys. Plasmas 16 055702
[3] Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
[4] Nam S K and Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004
[5] Boeuf J, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
[6] Chaudhury B and Boeuf J 2010 IEEE Trans. Plasma Sci. 38 2281
[7] Zhu G Q, Boeuf J and Chaudhury B 2011 Plasma Sources Sci. Technol. 20 035007
[8] Zhou Q and Dong Z 2011 Appl. Phys. Lett. 98 161504
[9] Vikharev A L, Gil'denburg V B, Golubev S V, Eremin B G, Ivanov O A, Litvak A G, Stepanov A N and Yunakovskii A D 1988 Sov. Phys. JETP 67 724
[10] Vedenin P V and Popov N A 2003 JETP 96 40
[11] Zhao P, Liao C and Feng J 2015 Chin. Phys. B 24 025101
[12] Zhao P, Liao C, Yang D and Zhong X 2014 Chin. Phys. B 23 055101
[13] Zhou Q and Dong Z 2013 Acta Phys. Sin. 62 205202 (in Chinese)
[14] Becker K H, Kogelschatz U, Schoenbach K H and Barker R J 2005 Nonequilibrium Air Plasmas at Atmospheric Pressure (UK: IOP Publishing Ltd.)
[15] Foster J, Krompholz H and Neuber A 2011 Phys. Plasmas 18 013502
[1] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[2] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[3] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[4] Numerical simulation of the initial plasma formation and current transfer in single-wire electrical explosion in vacuum
Kun Wang(王坤), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Jun Bai(白骏), Jian Wu(吴坚), Shen-Li Jia(贾申利), Ai-Ci Qiu(邱爱慈). Chin. Phys. B, 2017, 26(7): 075204.
[5] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[6] Effect of aperture field distribution on the maximum radiated power at atmospheric pressure
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(11): 115101.
[7] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[8] Permittivity and its temperature dependence in hexagonal structure BN dominated by the local electric field
Zhang Ting(张婷), Wu Meng-Qiang(吴孟强), Zhang Shu-Ren(张树人), Xiong Jie(熊杰), Wang Jin-Ming(王金明), Zhang Da-Hai(张大海), He Feng-Mei(何凤梅), and Li Zhong-Ping(李仲平) . Chin. Phys. B, 2012, 21(7): 077701.
[9] A STUDY OF HIGH POWER MICROWAVE AIR BREAKDOWN
Liu Guo-zhi (刘国治), Liu Jing-yue (刘静月), Huang Wen-hua (黄文华), Zhou Jin-shan (周金山), Song Xiao-xin (宋晓欣), Ning Hui (宁辉). Chin. Phys. B, 2000, 9(10): 757-763.
No Suggested Reading articles found!